Source code for mapclassify.classifiers

"""
A module of classification schemes for choropleth mapping.
"""

import copy
import functools
import warnings

import numpy as np
import scipy.stats as stats
from sklearn.cluster import KMeans

__author__ = "Sergio J. Rey"

__all__ = [
    "MapClassifier",
    "quantile",
    "BoxPlot",
    "EqualInterval",
    "FisherJenks",
    "FisherJenksSampled",
    "JenksCaspall",
    "JenksCaspallForced",
    "JenksCaspallSampled",
    "HeadTailBreaks",
    "MaxP",
    "MaximumBreaks",
    "NaturalBreaks",
    "Quantiles",
    "Percentiles",
    "PrettyBreaks",
    "StdMean",
    "UserDefined",
    "gadf",
    "KClassifiers",
    "CLASSIFIERS",
]

CLASSIFIERS = (
    "BoxPlot",
    "EqualInterval",
    "FisherJenks",
    "FisherJenksSampled",
    "HeadTailBreaks",
    "JenksCaspall",
    "JenksCaspallForced",
    "JenksCaspallSampled",
    "MaxP",
    "MaximumBreaks",
    "NaturalBreaks",
    "Quantiles",
    "Percentiles",
    "PrettyBreaks",
    "StdMean",
    "UserDefined",
)

K = 5  # default number of classes in any map scheme with this as an argument
SEEDRANGE = 1000000  # range for drawing random ints from for Natural Breaks


FMT = "{:.2f}"

try:
    from numba import njit

    HAS_NUMBA = True
except ImportError:
    HAS_NUMBA = False

    def njit(_type):  # noqa ARG001
        def decorator_njit(func):
            @functools.wraps(func)
            def wrapper_decorator(*args, **kwargs):
                return func(*args, **kwargs)

            return wrapper_decorator

        return decorator_njit


def _format_intervals(mc, fmt="{:.0f}"):
    """
    Helper methods to format legend intervals.


    Parameters
    ----------

    mc: MapClassifier
    fmt: str (default '{:.0f}')
        Specification of formatting for legend.

    Returns
    -------

    tuple:
        edges : list
            :math:`k` strings for class intervals.
        max_width : int
            Length of largest interval string.
        lower_open : bool
            True: lower bound of first interval is open.
            False: lower bound of first interval is closed.

    Notes
    -----

    For some classifiers, it is possible that the upper bound of the first
    interval is less than the minimum value of the attribute that is being
    classified. In these cases ``lower_open=True`` and the lower bound of the
    interval is set to ``numpy.NINF``.

    """

    lowest = mc.y.min()
    if hasattr(mc, "lowest") and mc.lowest is not None:
        lowest = mc.lowest
    lower_open = False
    if lowest > mc.bins[0]:
        lowest = -np.inf
        lower_open = True
    edges = [lowest]
    edges.extend(mc.bins)
    edges = [fmt.format(edge) for edge in edges]
    max_width = max([len(edge) for edge in edges])
    return edges, max_width, lower_open


def _get_mpl_labels(mc, fmt="{:.1f}"):
    """
    Helper method to format legend intervals for matplotlib (and geopandas).

    Parameters
    ----------

    mc : MapClassifier
    fmt : str (default '{:.1f}')
        Specification of formatting for legend.

    Returns
    -------

    intervals : list
        :math:`k` strings for class intervals.

    """
    edges, max_width, lower_open = _format_intervals(mc, fmt)
    k = len(edges) - 1
    left = ["["]
    if lower_open:
        left = ["("]
    left.extend("(" * k)
    right = "]" * (k + 1)
    lower = ["{:>{width}}".format(edges[i], width=max_width) for i in range(k)]
    upper = ["{:>{width}}".format(edges[i], width=max_width) for i in range(1, k + 1)]
    lower = [_l + r for _l, r in zip(left, lower)]
    upper = [_l + r for _l, r in zip(upper, right)]
    intervals = [_l + ", " + r for _l, r in zip(lower, upper)]
    return intervals


def _get_table(mc, fmt="{:.2f}"):
    """
    Helper function to generate tabular classification report.

    Parameters
    ----------

    mc: MapClassifier
    fmt: str (default '{:.2f}')
        specification of formatting for legend.

    Returns
    -------

    table : str
        Formatted table of classification results.

    """
    intervals = _get_mpl_labels(mc, fmt)
    interval_width = len(intervals[0])
    counts = list(map(str, mc.counts))
    count_width = max([len(count) for count in counts])
    count_width = max(count_width, len("count"))
    interval_width = max(interval_width, len("interval"))
    header = f"{'Interval' : ^{interval_width}}"
    header += " " * 3 + f"{'Count' : >{count_width}}"
    title = mc.name
    header += "\n" + "-" * len(header)
    table = [title, "", header]
    for i, interval in enumerate(intervals):
        row = f"{interval} | {counts[i] : >{count_width}}"
        table.append(row)
    return "\n".join(table)


def head_tail_breaks(values, cuts):
    """Head tail breaks helper function."""
    values = np.array(values)
    mean = np.mean(values)
    if len(cuts) > 0 and cuts[-1] == mean:  # this fixes floating point from GH#117
        return cuts
    cuts.append(mean)
    if len(set(values)) > 1:
        return head_tail_breaks(values[values > mean], cuts)
    return cuts


def quantile(y, k=4):
    """
    Calculates the quantiles for an array.

    Parameters
    ----------

    y : numpy.array
        :math:`(n,1)`, values to classify.
    k : int (default 4)
        Number of quantiles.

    Returns
    -------

    q : numpy.array
        :math:`(n,1)`, quantile values.

    Notes
    -----

    If there are enough ties that the quantile values repeat, we collapse to
    pseudo quantiles in which case the number of classes will be less than ``k``.

    Examples
    --------

    >>> import mapclassify
    >>> import numpy
    >>> x = numpy.arange(1000)

    >>> mapclassify.classifiers.quantile(x)
    array([249.75, 499.5 , 749.25, 999.  ])

    >>> mapclassify.classifiers.quantile(x, k=3)
    array([333., 666., 999.])

    """

    w = 100.0 / k
    p = np.arange(w, 100 + w, w)
    if p[-1] > 100.0:
        p[-1] = 100.0
    q = np.array([stats.scoreatpercentile(y, pct) for pct in p])
    q = np.unique(q)
    k_q = len(q)
    if k_q < k:
        warnings.warn(
            f"Not enough unique values in array to form {k} classes. "
            f"Setting k to {k_q}.",
            UserWarning,
            stacklevel=2,
        )
    return q


def binC(y, bins):  # noqa N802
    """
    Bin categorical/qualitative data.

    Parameters
    ----------

    y : numpy.array
        :math:`(n,q)`, categorical values.
    bins : numpy.array
        :math:`(k,1)`, unique values associated with each bin.

    Return
    ------

    b : numpy.array
        :math:`(n,q)` bin membership, values between ``0`` and ``k-1``.

    Examples
    --------

    >>> import numpy
    >>> import mapclassify
    >>> numpy.random.seed(1)
    >>> x = numpy.random.randint(2, 8, (10, 3))
    >>> bins = list(range(2, 8))
    >>> x
    array([[7, 5, 6],
           [2, 3, 5],
           [7, 2, 2],
           [3, 6, 7],
           [6, 3, 4],
           [6, 7, 4],
           [6, 5, 6],
           [4, 6, 7],
           [4, 6, 3],
           [3, 2, 7]])

    >>> y = mapclassify.classifiers.binC(x, bins)
    >>> y
    array([[5, 3, 4],
           [0, 1, 3],
           [5, 0, 0],
           [1, 4, 5],
           [4, 1, 2],
           [4, 5, 2],
           [4, 3, 4],
           [2, 4, 5],
           [2, 4, 1],
           [1, 0, 5]])

    """

    # TODO: consider renaming ``binC`` to ``bin_c`` to resolve N802 (gh#185)

    if np.ndim(y) == 1:
        k = 1
        n = np.shape(y)[0]
    else:
        n, k = np.shape(y)
    b = np.zeros((n, k), dtype="int")
    for i, _bin in enumerate(bins):
        b[np.nonzero(y == _bin)] = i

    # check for non-binned items and warn if needed
    vals = set(y.flatten())
    for val in vals:
        if val not in bins:
            warnings.warn(
                f"\nValue not in bin: {val}\nBins: {bins}", UserWarning, stacklevel=2
            )

    return b


def bin(y, bins):  # noqa A001
    """
    Bin interval/ratio data.

    Parameters
    ----------

    y : numpy.array
        :math:`(n,q)`, values to bin.
    bins : numpy.array
        :math:`(k,1)`, upper bounds of each bin (monotonic).

    Returns
    -------

    b : numpy.array
        :math:`(n,q)`, values of values between ``0`` and ``k-1``.

    Examples
    --------

    >>> import numpy
    >>> import mapclassify
    >>> numpy.random.seed(1)
    >>> x = numpy.random.randint(2, 20, (10, 3))
    >>> bins = [10, 15, 20]
    >>> b = mapclassify.classifiers.bin(x, bins)
    >>> x
    array([[ 7, 13, 14],
           [10, 11, 13],
           [ 7, 17,  2],
           [18,  3, 14],
           [ 9, 15,  8],
           [ 7, 13, 12],
           [16,  6, 11],
           [19,  2, 15],
           [11, 11,  9],
           [ 3,  2, 19]])

    >>> b
    array([[0, 1, 1],
           [0, 1, 1],
           [0, 2, 0],
           [2, 0, 1],
           [0, 1, 0],
           [0, 1, 1],
           [2, 0, 1],
           [2, 0, 1],
           [1, 1, 0],
           [0, 0, 2]])

    """

    # TODO: consider renaming ``bin`` to ``bin_int`` to resolve A001 (gh#185)

    if np.ndim(y) == 1:
        k = 1
        n = np.shape(y)[0]
    else:
        n, k = np.shape(y)
    b = np.zeros((n, k), dtype="int")
    i = len(bins)
    if not isinstance(bins, list):
        bins = bins.tolist()
    binsc = copy.copy(bins)
    while binsc:
        i -= 1
        c = binsc.pop(-1)
        b[np.nonzero(y <= c)] = i
    return b


def bin1d(x, bins):
    """
    Place values of a 1-d array into bins and determine
    counts of values in each bin.

    Parameters
    ----------

    x : numpy.array
        :math:`(n, 1)`, values to bin.
    bins : numpy.array
        :math:`(k,1)`, upper bounds of each bin (monotonic).

    Returns
    -------

    binIds : numpy.array
        1-d array of integer bin IDs.
    counts : int
        Number of elements of ``x`` falling in each bin.

    Examples
    --------

    >>> import numpy
    >>> import mapclassify
    >>> x = numpy.arange(100, dtype = "float")
    >>> bins = [25, 74, 100]
    >>> binIds, counts = mapclassify.classifiers.bin1d(x, bins)
    >>> binIds
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

    >>> counts.tolist()
    [26, 49, 25]

    """
    left = [-float("inf")]
    left.extend(bins[0:-1])
    right = bins
    cuts = list(zip(left, right))
    k = len(bins)
    binIds = np.zeros(x.shape, dtype="int")
    while cuts:
        k -= 1
        _l, r = cuts.pop(-1)
        binIds += (x > _l) * (x <= r) * k
    counts = np.bincount(binIds, minlength=len(bins))
    return (binIds, counts)


def _pretty_number(x, rounded=True):
    exp = np.floor(np.log10(x))
    f = x / 10**exp
    if rounded:
        if f < 1.5:
            nf = 1.0
        elif f < 3.0:
            nf = 2.0
        elif f < 7.0:
            nf = 5.0
        else:
            nf = 10.0
    else:
        if f <= 1.0:
            nf = 1.0
        elif f <= 2.0:
            nf = 2.0
        elif f <= 5.0:
            nf = 5.0
        else:
            nf = 10.0

    return nf * 10.0**exp


def _pretty(y, k=5):
    low = y.min()
    high = y.max()
    rg = _pretty_number(high - low, False)
    d = _pretty_number(rg / (k - 1), True)
    miny = np.floor(low / d) * d
    maxy = np.ceil(high / d) * d
    return np.arange(miny, maxy + 0.5 * d, d)


def load_example():
    """
    Helper function for doc tests
    """
    from .datasets import calemp

    return calemp.load()


def _kmeans(y, k=5, n_init=10):
    """
    Helper function to do k-means in one dimension.

    Parameters
    ----------

    y : numpy.array
        :math:`(n,1)`, values to classify.
    k : int, (default 5)
        Number of classes to form.
    n_init : int, (default 10)
        Number of initial  solutions. Best of initial results is returned.

    """

    y = y * 1.0  # sklearn.cluster.KMeans needs float or double dtype
    y.shape = (-1, 1)
    result = KMeans(n_clusters=k, init="k-means++", n_init=n_init).fit(y)
    class_ids = result.labels_
    centroids = result.cluster_centers_
    binning = []
    for c in range(k):
        values = y[class_ids == c]
        binning.append([values.max(), len(values)])
    binning = np.array(binning)
    binning = binning[binning[:, 0].argsort()]
    cuts = binning[:, 0]

    y_cent = np.zeros_like(y)
    for c in range(k):
        y_cent[class_ids == c] = centroids[c]
    diffs = y - y_cent
    diffs *= diffs

    return class_ids, cuts, diffs.sum(), centroids


def natural_breaks(values, k=5, init=10):
    """
    Natural breaks helper function. Jenks natural breaks is k-means in one dimension.

    Parameters
    ----------

    values : numpy.array
        :math:`(n, 1)` values to bin.
    k : int, (default 5)
        Number of classes.
    init: int, (default 10)
        Number of different solutions to obtain using different centroids.
        Best solution is returned.

    """
    values = np.array(values)
    uv = np.unique(values)
    uvk = len(uv)
    if uvk < k:
        warnings.warn(
            f"Not enough unique values in array to form {k} classes. "
            f"Setting k to {uvk}.",
            UserWarning,
            stacklevel=2,
        )
        k = uvk
    kres = _kmeans(values, k, n_init=init)
    sids = kres[-1]  # centroids
    fit = kres[-2]
    class_ids = kres[0]
    cuts = kres[1]
    return (sids, class_ids, fit, cuts)


@njit("f8[:](f8[:], u2)")
def _fisher_jenks_means(values, classes=5):
    """
    Jenks Optimal (Natural Breaks) algorithm implemented in Python.

    Notes
    -----

    The original Python code comes from here:
    http://danieljlewis.org/2010/06/07/jenks-natural-breaks-algorithm-in-python/
    and is based on a JAVA and Fortran code available here:
    https://stat.ethz.ch/pipermail/r-sig-geo/2006-March/000811.html

    Returns class breaks such that classes are internally homogeneous while
    assuring heterogeneity among classes.

    """
    n_data = len(values)
    mat1 = np.zeros((n_data + 1, classes + 1), dtype=np.int32)
    mat2 = np.zeros((n_data + 1, classes + 1), dtype=np.float32)
    mat1[1, 1:] = 1
    mat2[2:, 1:] = np.inf

    v = np.float32(0)
    for _l in range(2, len(values) + 1):
        s1 = np.float32(0)
        s2 = np.float32(0)
        w = np.float32(0)
        for m in range(1, _l + 1):
            i3 = _l - m + 1
            val = np.float32(values[i3 - 1])
            s2 += val * val
            s1 += val
            w += np.float32(1)
            v = s2 - (s1 * s1) / w
            i4 = i3 - 1
            if i4 != 0:
                for j in range(2, classes + 1):
                    if mat2[_l, j] >= (v + mat2[i4, j - 1]):
                        mat1[_l, j] = i3
                        mat2[_l, j] = v + mat2[i4, j - 1]
        mat1[_l, 1] = 1
        mat2[_l, 1] = v

    k = len(values)

    kclass = np.zeros(classes + 1, dtype=values.dtype)
    kclass[classes] = values[len(values) - 1]
    kclass[0] = values[0]
    for countNum in range(classes, 1, -1):
        pivot = mat1[k, countNum]
        _id = int(pivot - 2)
        kclass[countNum - 1] = values[_id]
        k = int(pivot - 1)
    return np.delete(kclass, 0)


class MapClassifier:
    r"""
    Abstract class for all map classifications :cite:`Slocum_2009`

    For an array :math:`y` of :math:`n` values, a map classifier places each
    value :math:`y_i` into one of :math:`k` mutually exclusive and exhaustive
    classes.  Each classifer defines the classes based on different criteria,
    but in all cases the following hold for the classifiers in PySAL:

    .. math:: C_j^l < y_i \le C_j^u \  \forall  i \in C_j

    where :math:`C_j` denotes class :math:`j` which has lower bound
          :math:`C_j^l` and upper bound :math:`C_j^u`.

    Map Classifiers Supported

    * :class:`mapclassify.classifiers.BoxPlot`
    * :class:`mapclassify.classifiers.EqualInterval`
    * :class:`mapclassify.classifiers.FisherJenks`
    * :class:`mapclassify.classifiers.FisherJenksSampled`
    * :class:`mapclassify.classifiers.HeadTailBreaks`
    * :class:`mapclassify.classifiers.JenksCaspall`
    * :class:`mapclassify.classifiers.JenksCaspallForced`
    * :class:`mapclassify.classifiers.JenksCaspallSampled`
    * :class:`mapclassify.classifiers.MaxP`
    * :class:`mapclassify.classifiers.MaximumBreaks`
    * :class:`mapclassify.classifiers.NaturalBreaks`
    * :class:`mapclassify.classifiers.Quantiles`
    * :class:`mapclassify.classifiers.Percentiles`
    * :class:`mapclassify.classifiers.StdMean`
    * :class:`mapclassify.classifiers.UserDefined`

    In addition to the classifiers, there are several utility functions that
    can be used to evaluate the properties of a specific classifier,
    or for automatic selection of a classifier and number of classes.

    * :func:`mapclassify.classifiers.gadf`
    * :class:`mapclassify.classifiers.K_classifiers`

    """

    def __init__(self, y):
        y = np.asarray(y).flatten()
        self.name = "Map Classifier"
        self.fmt = FMT
        self.y = y
        self._classify()
        self._summary()

    def get_fmt(self):
        return self._fmt

    def set_fmt(self, fmt):
        self._fmt = fmt

    fmt = property(get_fmt, set_fmt)

    def _summary(self):
        yb = self.yb
        self.classes = [np.nonzero(yb == c)[0].tolist() for c in range(self.k)]
        self.tss = self.get_tss()
        self.adcm = self.get_adcm()
        self.gadf = self.get_gadf()

    def _classify(self):
        self._set_bins()
        self.yb, self.counts = bin1d(self.y, self.bins)

    def _update(self, data, *args, **kwargs):
        """
        The only thing that *should* happen in this function is

        1. input sanitization for pandas
        2. classification/reclassification.

        Using their ``__init__`` methods, all classifiers can re-classify given
        different input parameters or additional data.

        If you've got a cleverer updating equation other than the intial estimation
        equation, remove the call to ``self.__init__`` below and replace it with
        the updating function.
        """
        if data is not None:
            data = np.asarray(data).flatten()
            data = np.append(data.flatten(), self.y)
        else:
            data = self.y
        self.__init__(data, *args, **kwargs)

    @classmethod
    def make(cls, *args, **kwargs):
        """
        Configure and create a classifier that will consume data and produce
        classifications, given the configuration options specified by this
        function.

        Note that this implements a *partial application* of the relevant class
        constructor. ``make`` creates a function that returns classifications; it
        does not actually do the classification.

        If you want to classify data directly, use the appropriate class
        constructor, like ``Quantiles``, ``Max_Breaks``, etc.

        If you *have* a classifier object, but want to find which bins new data
        falls into, use ``find_bin``.

        Parameters
        ----------

        *args : required positional arguments
            All positional arguments required by the classifier,
            **excluding** the input data.
        rolling : bool
            A boolean configuring the outputted classifier to use
            a rolling classifier rather than a new classifier for
            each input. If ``rolling``, this adds the current data to
            all of the previous data in the classifier, and
            rebalances the bins, like a running median computation.
        return_object : bool
            Return the classifier object (or not).
        return_bins : bool
            Return the bins/breaks (or not).
        return_counts : bool
            Return the histogram of objects falling into each bin (or not).

        Returns
        -------

        A function that consumes data and returns their bins (and object,
        bins/breaks, or counts, if requested).

        Notes
        -----

        This is most useful when you want to run a classifier many times
        with a given configuration, such as when classifying many columns of an
        array or dataframe using the same configuration.

        Examples
        --------

        >>> import libpysal
        >>> import mapclassify
        >>> import geopandas
        >>> import numpy
        >>> import pandas
        >>> df = geopandas.read_file(libpysal.examples.get_path("columbus.dbf"))
        >>> classifier = mapclassify.Quantiles.make(k=9)
        >>> cl = df[["HOVAL", "CRIME", "INC"]].apply(classifier)
        >>> cl["HOVAL"].values[:10]
        array([8, 7, 2, 4, 1, 3, 8, 5, 7, 8])

        >>> cl["CRIME"].values[:10]
        array([0, 1, 3, 4, 6, 2, 0, 5, 3, 4])

        >>> cl["INC"].values[:10]
        array([7, 8, 5, 0, 3, 5, 0, 3, 6, 4])

        >>> data = [
        ...     numpy.linspace(3,8,num=10),
        ...     numpy.linspace(10, 0, num=10),
        ...     numpy.linspace(-5, 15, num=10)
        ... ]
        >>> data = pandas.DataFrame(data).T
        >>> data
                  0          1          2
        0  3.000000  10.000000  -5.000000
        1  3.555556   8.888889  -2.777778
        2  4.111111   7.777778  -0.555556
        3  4.666667   6.666667   1.666667
        4  5.222222   5.555556   3.888889
        5  5.777778   4.444444   6.111111
        6  6.333333   3.333333   8.333333
        7  6.888889   2.222222  10.555556
        8  7.444444   1.111111  12.777778
        9  8.000000   0.000000  15.000000

        >>> data.apply(mapclassify.Quantiles.make(rolling=True))
           0  1  2
        0  0  4  0
        1  0  4  0
        2  1  4  0
        3  1  3  0
        4  2  2  1
        5  2  1  2
        6  3  1  4
        7  3  0  4
        8  4  0  4
        9  4  0  4

        >>> dbf = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"))
        >>> data = dbf.by_col_array("PRICE", "LOTSZ", "SQFT")
        >>> my_bins = [1, 10, 20, 40, 80]
        >>> cl = [mapclassify.UserDefined.make(bins=my_bins)(a) for a in data.T]
        >>> len(cl)
        3

        >>> cl[0][:10]
        array([4, 5, 5, 5, 4, 4, 5, 4, 4, 5])

        """

        # only flag overrides return flag
        to_annotate = copy.deepcopy(kwargs)
        return_object = kwargs.pop("return_object", False)
        return_bins = kwargs.pop("return_bins", False)
        return_counts = kwargs.pop("return_counts", False)

        rolling = kwargs.pop("rolling", False)
        if rolling:
            #  just initialize a fake classifier
            data = list(range(10))
            cls_instance = cls(data, *args, **kwargs)
            #  and empty it, since we'll be using the update
            cls_instance.y = np.array([])
        else:
            cls_instance = None

        #  wrap init in a closure to make a consumer.
        #  Qc Na: "Objects/Closures are poor man's Closures/Objects"
        def classifier(data, cls_instance=cls_instance):
            if rolling:
                cls_instance.update(data, inplace=True, **kwargs)
                yb = cls_instance.find_bin(data)
            else:
                cls_instance = cls(data, *args, **kwargs)
                yb = cls_instance.yb
            outs = [yb, None, None, None]
            outs[1] = cls_instance if return_object else None
            outs[2] = cls_instance.bins if return_bins else None
            outs[3] = cls_instance.counts if return_counts else None
            outs = [a for a in outs if a is not None]
            if len(outs) == 1:
                return outs[0]
            else:
                return outs

        #  for debugging/jic, keep around the kwargs.
        #  in future, we might want to make this a thin class, so that we can
        #  set a custom repr. Call the class `Binner` or something, that's a
        #  pre-configured Classifier that just consumes data, bins it, &
        #  possibly updates the bins.
        classifier._options = to_annotate
        return classifier

    def update(self, y=None, inplace=False, **kwargs):
        """
        Add data or change classification parameters.

        Parameters
        ----------

         y : numpy.array (default None)
            :math:`(n,1)`, array of data to classify.
        inplace : bool (default False)
            Whether to conduct the update in place or to return a
            copy estimated from the additional specifications.
        **kwargs : dict
            Additional parameters that are passed to the ``__init__`` function
            of the class. For documentation, check the class constructor.

        """
        kwargs.update({"k": kwargs.pop("k", self.k)})
        if inplace:
            self._update(y, **kwargs)
        else:
            new = copy.deepcopy(self)
            new._update(y, **kwargs)
            return new

    def __str__(self):
        return self.table()

    def __repr__(self):
        return self.table()

    def table(self):
        fmt = self.fmt
        return _get_table(self, fmt=fmt)

    def __call__(self, *args):
        """
        This will allow the classifier to be called like it's a function.

        Whether or not we want to make this be ``find_bin`` or ``update`` is a
        design decision.

        I like this as ``find_bin``, since a classifier's job should be to classify
        the data given to it using the rules estimated from the ``_classify()``.
        function.
        """
        return self.find_bin(*args)

    def get_tss(self):
        """Returns sum of squares over all class means."""
        tss = 0
        for class_def in self.classes:
            if len(class_def) > 0:
                yc = self.y[class_def]
                css = yc - yc.mean()
                css *= css
                tss += sum(css)
        return tss

    def _set_bins(self):
        pass

    def get_adcm(self):
        """
        Absolute deviation around class median (*ADCM*).

        Calculates the absolute deviations of each observation about its class
        median as a measure of fit for the classification method.

        Returns sum of *ADCM* over all classes.
        """
        adcm = 0
        for class_def in self.classes:
            if len(class_def) > 0:
                yc = self.y[class_def]
                yc_med = np.median(yc)
                ycd = np.abs(yc - yc_med)
                adcm += sum(ycd)
        return adcm

    def get_gadf(self):
        """Goodness of absolute deviation of fit."""
        adam = (np.abs(self.y - np.median(self.y))).sum()
        # return 1 if array is invariant
        gadf = 1 if adam == 0 else 1 - self.adcm / adam
        return gadf

    def find_bin(self, x):
        """
        Sort input or inputs according to the current bin estimate.

        Parameters
        ----------

        x : numpy.array, int, float
            A value or array of values to fit within the estimated bins.

        Returns
        -------

        right : numpy.array, int
            A bin index or array of bin indices that classify the
            input into one of the classifiers' bins.

        Notes
        -----

        This differs from similar functionality in
        ``numpy.digitize(x, classi.bins, right=True)``.

        This will always provide the closest bin, so data "outside" the classifier,
        above and below the max/min breaks, will be classified into the nearest bin.

        ``numpy.digitize`` returns :math:`k+1` for data greater than the greatest bin,
        but retains 0 for data below the lowest bin.

        """
        x = np.asarray(x).flatten()
        right = np.digitize(x, self.bins, right=True)
        if right.max() == len(self.bins):
            right[right == len(self.bins)] = len(self.bins) - 1
        return right

    def get_legend_classes(self, fmt=FMT):
        """
        Format the strings for the classes on the legend.


        Parameters
        ----------

        fmt : str (default '{:.2f}')
            Formatting specification.

        Returns
        -------

        classes : list
            :math:`k` strings with class interval definitions.

        """
        return _get_mpl_labels(self, fmt)

    def plot(
        self,
        gdf,
        border_color="lightgray",
        border_width=0.10,
        title=None,
        legend=False,
        cmap="YlGnBu",
        axis_on=True,
        legend_kwds={"loc": "lower right", "fmt": FMT},
        file_name=None,
        dpi=600,
        ax=None,
    ):
        """
        Plot a mapclassifier object.

        Parameters
        ----------

        gdf : geopandas.GeoDataFrame
            Contains the geometry column for the choropleth map.
        border_color  : str (default 'lightgray')
            Matplotlib color string to use for polygon border.
        border_width : float (default 0.10)
            Width of polygon border.
        title : str (default None)
            Title of map.
        cmap : str (default 'YlGnBu')
            Matplotlib color string for color map to fill polygons.
        axis_on : bool (default True)
            Show coordinate axes.
        legend_kwds : dict (default {'loc': 'lower right', 'fmt':FMT})
            Options for ``ax.legend()``.
        file_name : str (default None)
            Name of file to save figure to.
        dpi : int (default 600)
            Dots per inch for saved figure.
        ax : matplotlib.Axis (default None)
            Axis on which to plot the choropleth.
            Default is ``None``, which plots on the current figure.

        Returns
        -------

        f, ax : tuple
            Matplotlib figure and axis on which the plot is made.

        Examples
        --------

        >>> import libpysal
        >>> import geopandas
        >>> import mapclassify
        >>> gdf = geopandas.read_file(libpysal.examples.get_path("columbus.shp"))
        >>> q5 = mapclassify.Quantiles(gdf.CRIME)
        >>> q5.plot(gdf)  # doctest: +SKIP

        Notes
        -----

        Requires ``matplotlib``, and implicitly requires a
        ``geopandas.GeoDataFrame`` as input.

        """
        try:
            import matplotlib.pyplot as plt
        except ImportError:
            raise ImportError(
                "Mapclassify.plot depends on matplotlib.pyplot, and this was"
                "not able to be imported. \nInstall matplotlib to"
                "plot spatial classifier."
            ) from None
        if ax is None:
            f = plt.figure()
            ax = plt.gca()
        else:
            f = plt.gcf()

        ax = gdf.assign(_cl=self.y).plot(
            column="_cl",
            ax=ax,
            cmap=cmap,
            edgecolor=border_color,
            linewidth=border_width,
            scheme=self.name,
            legend=legend,
            legend_kwds=legend_kwds,
        )
        if not axis_on:
            ax.axis("off")
        if title:
            f.suptitle(title)
        if file_name:
            plt.savefig(file_name, dpi=dpi)
        return f, ax

    def plot_histogram(
        self,
        color="dodgerblue",
        linecolor="black",
        linewidth=None,
        ax=None,
        despine=True,
        **kwargs,
    ):
        """Plot histogram of `y` with bin values superimposed

        Parameters
        ----------
        color : str, optional
            hue to color bars of the histogram, by default "dodgerblue".
        linecolor : str, optional
            color of the lines demarcating each class bin, by default "black"
        linewidth : int, optional
            change the linewidth demarcating each class bin
        ax : matplotlib.Axes, optional
            axes object to plot onto, by default None
        despine : bool, optional
            If True, to use seaborn's despine function to remove top and right axes,
            default is True
        kwargs : dict, optional
            additional keyword arguments passed to matplotlib.axes.Axes.hist, by default
            None

        Returns
        -------
        matplotlib.Axes
            an Axes object with histogram and class bins

        Raises
        ------
        ImportError
            depends matplotlib and rasies if not installed
        """
        try:
            import matplotlib.pyplot as plt

            if ax is None:
                _, ax = plt.subplots()
        except ImportError as e:
            raise ImportError from e(
                "You must have matplotlib available to use this function"
            )
        # plot `y` as a histogram
        ax.hist(self.y, color=color, **kwargs)
        # get the top of the ax so we know how high to raise each class bar
        lim = ax.get_ylim()[1]
        # plot upper limit of each bin
        for i in self.bins:
            ax.vlines(i, 0, lim, color=linecolor, linewidth=linewidth)
        # despine if specified
        if despine:
            ax.spines["right"].set_visible(False)
            ax.spines["top"].set_visible(False)
        return ax


[docs] class HeadTailBreaks(MapClassifier): """ Head/tail Breaks Map Classification for Heavy-tailed Distributions. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> import numpy >>> numpy.random.seed(10) >>> cal = mapclassify.load_example() >>> htb = mapclassify.HeadTailBreaks(cal) >>> htb.k 3 >>> htb.counts.tolist() [50, 7, 1] >>> htb.bins array([ 125.92810345, 811.26 , 4111.45 ]) >>> numpy.random.seed(123456) >>> x = numpy.random.lognormal(3, 1, 1000) >>> htb = mapclassify.HeadTailBreaks(x) >>> htb.bins array([ 32.26204423, 72.50205622, 128.07150107, 190.2899093 , 264.82847377, 457.88157946, 576.76046949]) >>> htb.counts.tolist() [695, 209, 62, 22, 10, 1, 1] Notes ----- Head/tail Breaks is a relatively new classification method developed for data with a heavy-tailed distribution. Implementation based on contributions by Alessandra Sozzi <alessandra.sozzi@gmail.com>. For theoretical details see :cite:`Jiang_2013`. """
[docs] def __init__(self, y): MapClassifier.__init__(self, y) self.name = "HeadTailBreaks"
def _set_bins(self): x = self.y.copy() bins = [] bins = head_tail_breaks(x, bins) self.bins = np.array(bins) self.k = len(self.bins)
[docs] class EqualInterval(MapClassifier): """ Equal Interval Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. Each value is the ID of the class the observation belongs to :math:`yb[i] = j` for :math:`j>=1` if :math:`bins[j-1] < y[i] <= bins[j]`, otherwise :math:`yb[i] = 0`. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> ei = mapclassify.EqualInterval(cal, k=5) >>> ei.k 5 >>> ei.counts.tolist() [57, 0, 0, 0, 1] >>> ei.bins array([ 822.394, 1644.658, 2466.922, 3289.186, 4111.45 ]) Notes ----- Intervals defined to have equal width: .. math:: bins_j = min(y)+w*(j+1) with :math:`w=\\frac{max(y)-min(j)}{k}` """
[docs] def __init__(self, y, k=K): """ see class docstring """ if min(y) == max(y): raise ValueError( f"Not enough unique values in array to form {k} classes. " "All values in `y` are equal." ) self.k = k MapClassifier.__init__(self, y) self.name = "EqualInterval"
def _set_bins(self): y = self.y k = self.k max_y = max(y) min_y = min(y) rg = max_y - min_y width = rg * 1.0 / k cuts = np.arange(min_y + width, max_y + width, width) if len(cuts) > self.k: # handle overshooting cuts = cuts[0:k] cuts[-1] = max_y bins = cuts.copy() self.bins = bins
[docs] class Percentiles(MapClassifier): """ Percentiles Map Classification Parameters ---------- y : numpy.array Attribute to classify. pct : numpy.array (default [1, 10, 50, 90, 99, 100]) Percentiles. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> p = mapclassify.Percentiles(cal) >>> p.bins array([1.357000e-01, 5.530000e-01, 9.365000e+00, 2.139140e+02, 2.179948e+03, 4.111450e+03]) >>> p.counts.tolist() [1, 5, 23, 23, 5, 1] >>> p2 = mapclassify.Percentiles(cal, pct = [50, 100]) >>> p2.bins array([ 9.365, 4111.45 ]) >>> p2.counts.tolist() [29, 29] >>> p2.k 2 """
[docs] def __init__(self, y, pct=[1, 10, 50, 90, 99, 100]): self.pct = pct MapClassifier.__init__(self, y) self.name = "Percentiles"
def _set_bins(self): y = self.y pct = self.pct self.bins = np.array([stats.scoreatpercentile(y, p) for p in pct]) self.k = len(self.bins)
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"pct": kwargs.pop("pct", self.pct)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class PrettyBreaks(MapClassifier):
[docs] def __init__(self, y, k=5): """ Pretty breakpoints Computes breaks that are equally spaced round values which cover the range of values in `y`. The breaks are chosen so that they are 1, 2, or 5 times a power of 10. Parameters ---------- y : array (n,1) attribute to classify k : int The number of desired classes Notes ----- The number of classes may be different from the specified `k`, as the rounding of the upper bounds takes precedent. The lower bound of the first interval will be equal to the minimum of the data. """ self.k = k MapClassifier.__init__(self, y) self.name = "Pretty"
def _set_bins(self): bins = _pretty(self.y, self.k) self.bins = bins[1:]
[docs] class BoxPlot(MapClassifier): """ BoxPlot Map Classification. Parameters ---------- y : numpy.array Attribute to classify hinge : float (default 1.5) Multiplier for *IQR*. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin ids for observations. bins : array :math:`(n,1)`, the upper bounds of each class (monotonic). k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. low_outlier_ids : numpy.array Indices of observations that are low outliers. high_outlier_ids : numpy.array Indices of observations that are high outliers. Notes ----- The bins are set as follows:: bins[0] = q[0]-hinge*IQR bins[1] = q[0] bins[2] = q[1] bins[3] = q[2] bins[4] = q[2]+hinge*IQR bins[5] = inf (see Notes) where :math:`q` is an array of the first three quartiles of :math:`y` and :math:`IQR=q[2]-q[0]`. If :math:`q[2]+hinge*IQR > max(y)` there will only be 5 classes and no high outliers, otherwise, there will be 6 classes and at least one high outlier. Examples -------- >>> import mapclassify >>> import numpy >>> cal = mapclassify.load_example() >>> bp = mapclassify.BoxPlot(cal) >>> bp.bins array([-5.287625e+01, 2.567500e+00, 9.365000e+00, 3.953000e+01, 9.497375e+01, 4.111450e+03]) >>> bp.counts.tolist() [0, 15, 14, 14, 6, 9] >>> bp.high_outlier_ids.tolist() [0, 6, 18, 29, 33, 36, 37, 40, 42] >>> cal[bp.high_outlier_ids].values array([ 329.92, 181.27, 370.5 , 722.85, 192.05, 110.74, 4111.45, 317.11, 264.93]) >>> bx = mapclassify.BoxPlot(numpy.arange(100)) >>> bx.bins array([-49.5 , 24.75, 49.5 , 74.25, 148.5 ]) """
[docs] def __init__(self, y, hinge=1.5): """ Parameters ---------- y : numpy.array :math:`(n,1)`, attribute to classify hinge : float (default 1.5) Multiple of inter-quartile range. """ self.hinge = hinge MapClassifier.__init__(self, y) self.name = "BoxPlot"
def _set_bins(self): y = self.y pct = [25, 50, 75, 100] bins = [stats.scoreatpercentile(y, p) for p in pct] iqr = bins[-2] - bins[0] self.iqr = iqr pivot = self.hinge * iqr left_fence = bins[0] - pivot right_fence = bins[-2] + pivot if right_fence < bins[-1]: bins.insert(-1, right_fence) else: bins[-1] = right_fence bins.insert(0, left_fence) self.bins = np.array(bins) self.k = len(bins) def _classify(self): MapClassifier._classify(self) self.low_outlier_ids = np.nonzero(self.yb == 0)[0] self.high_outlier_ids = np.nonzero(self.yb == 5)[0]
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"hinge": kwargs.pop("hinge", self.hinge)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class Quantiles(MapClassifier): """ Quantile Map Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. Each value is the ID of the class the observation belongs to :math:`yb[i] = j` for :math:`j>=1` if :math:`bins[j-1] < y[i] <= bins[j]`, otherwise :math:`yb[i] = 0`. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> q = mapclassify.Quantiles(cal, k=5) >>> q.bins array([1.46400e+00, 5.79800e+00, 1.32780e+01, 5.46160e+01, 4.11145e+03]) >>> q.counts.tolist() [12, 11, 12, 11, 12] """
[docs] def __init__(self, y, k=K): self.k = k MapClassifier.__init__(self, y) self.name = "Quantiles"
def _set_bins(self): y = self.y k = self.k self.bins = quantile(y, k=k)
[docs] class StdMean(MapClassifier): """ Standard Deviation and Mean Map Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify multiples : numpy.array (default [-2, -1, 1, 2]) The multiples of the standard deviation to add/subtract from the sample mean to define the bins. anchor : bool (default False) Anchor upper bound of one class to the sample mean. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Notes ----- If anchor is True, one of the intervals will have its closed upper bound equal to the mean of y. Intermediate intervals will have widths equal to the standard deviation of y. The first interval will be closed on the minimum value of y, and the last interval will be closed on the maximum of y. The first and last intervals may have widths different from the intermediate intervals. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> st = mapclassify.StdMean(cal) >>> st.k 5 >>> st.bins array([-967.36235382, -420.71712519, 672.57333208, 1219.21856072, 4111.45 ]) >>> st.counts.tolist() [0, 0, 56, 1, 1] >>> st3 = mapclassify.StdMean(cal, multiples = [-3, -1.5, 1.5, 3]) >>> st3.bins array([-1514.00758246, -694.03973951, 945.8959464 , 1765.86378936, 4111.45 ]) >>> st3.counts.tolist() [0, 0, 57, 0, 1] >>> stda = mapclassify.StdMean(cal, anchor=True) >>> stda.k 9 >>> stda.bins array([ 125.92810345, 672.57333208, 1219.21856072, 1765.86378936, 2312.50901799, 2859.15424663, 3405.79947527, 3952.4447039 , 4111.45 ]) >>> float(cal.mean()), float(cal.std()), float(cal.min()), float(cal.max()) (125.92810344827588, 546.6452286365233, 0.13, 4111.45) """
[docs] def __init__(self, y, multiples=[-2, -1, 1, 2], anchor=False): self.multiples = multiples self.anchor = anchor MapClassifier.__init__(self, y) self.name = "StdMean"
def _set_bins(self): y = self.y s = y.std(ddof=1) m = y.mean() if self.anchor: min_z = int((y.min() - m) / s) max_z = int((y.max() - m) / s) + 1 self.multiples = list(range(min_z, max_z)) cuts = [m + s * w for w in self.multiples] y_max = y.max() if cuts[-1] < y_max: cuts.append(y_max) self.bins = np.array(cuts) self.k = len(cuts)
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"multiples": kwargs.pop("multiples", self.multiples)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class MaximumBreaks(MapClassifier): """ Maximum Breaks Map Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. mindiff : float (default 0) The minimum difference between class breaks. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> mb = mapclassify.MaximumBreaks(cal, k=5) >>> mb.k 5 >>> mb.bins array([ 146.005, 228.49 , 546.675, 2417.15 , 4111.45 ]) >>> mb.counts.tolist() [50, 2, 4, 1, 1] """
[docs] def __init__(self, y, k=5, mindiff=0): if min(y) == max(y): raise ValueError( f"Not enough unique values in array to form {k} classes. " "All values in `y` are equal." ) self.k = k self.mindiff = mindiff MapClassifier.__init__(self, y) self.name = "MaximumBreaks"
def _set_bins(self): xs = self.y.copy() k = self.k xs.sort() diffs = xs[1:] - xs[:-1] idxs = np.argsort(diffs) k1 = k - 1 ud = np.unique(diffs) if len(ud) < k1: warnings.warn( "Insufficient number of unique diffs. Breaks are random.", UserWarning, stacklevel=3, ) mp = [] for c in range(1, k): idx = idxs[-c] cp = (xs[idx] + xs[idx + 1]) / 2.0 mp.append(cp) mp.append(xs[-1]) mp.sort() self.bins = np.array(mp)
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"k": kwargs.pop("k", self.k)}) kwargs.update({"mindiff": kwargs.pop("mindiff", self.mindiff)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class NaturalBreaks(MapClassifier): """ Natural Breaks Map Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. initial : int (default 10) The number of initial solutions generated with different centroids. The best of initial results are returned. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> import numpy >>> numpy.random.seed(123456) >>> cal = mapclassify.load_example() >>> nb = mapclassify.NaturalBreaks(cal, k=5) >>> nb.k 5 >>> nb.counts.tolist() [49, 3, 4, 1, 1] >>> nb.bins array([ 75.29, 192.05, 370.5 , 722.85, 4111.45]) """
[docs] def __init__(self, y, k=K, initial=10): self.k = k self.init = initial MapClassifier.__init__(self, y) self.name = "NaturalBreaks"
def _set_bins(self): x = self.y.copy() k = self.k values = np.array(x) uv = np.unique(values) uvk = len(uv) if uvk < k: warnings.warn( f"Not enough unique values in array to form {k} classes. " f"Setting k to {uvk}.", UserWarning, stacklevel=3, ) k = uvk uv.sort() # we set the bins equal to the sorted unique values and ramp k # downwards. no need to call kmeans. self.bins = uv self.k = k else: res0 = natural_breaks(x, k, init=self.init) self.bins = np.array(res0[-1]) self.k = len(self.bins)
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"k": kwargs.pop("k", self.k)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class FisherJenks(MapClassifier): """ Fisher Jenks optimal classifier - mean based. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> fj = mapclassify.FisherJenks(cal) >>> float(fj.adcm) 799.24 >>> fj.bins.tolist() [75.29, 192.05, 370.5, 722.85, 4111.45] >>> fj.counts.tolist() [49, 3, 4, 1, 1] """
[docs] def __init__(self, y, k=K): if not HAS_NUMBA: warnings.warn( "Numba not installed. Using slow pure python version.", UserWarning, stacklevel=3, ) nu = len(np.unique(y)) if nu < k: raise ValueError( f"Fewer unique values ({nu}) than specified classes ({k})." ) self.k = k MapClassifier.__init__(self, y) self.name = "FisherJenks"
def _set_bins(self): x = np.sort(self.y).astype("f8") self.bins = _fisher_jenks_means(x, classes=self.k)
[docs] class FisherJenksSampled(MapClassifier): """ Fisher Jenks optimal classifier - mean based using random sample. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. pct : float (default 0.10) The percentage of :math:`n` that should form the sample. If ``pct`` is specified such that :math:`n*pct > 1000`, then :math:`pct = 1000./n`, unless truncate is ``False``. truncate : bool (default True) Truncate ``pct`` in cases where :math:`pct * n > 1000.`. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Notes ----- For theoretical details see :cite:`Rey_2016`. """
[docs] def __init__(self, y, k=K, pct=0.10, truncate=True): self.k = k n = y.size if (pct * n > 1000) and truncate: pct = 1000.0 / n ids = np.random.randint(0, n, int(n * pct)) y = np.asarray(y) yr = y[ids] yr[-1] = max(y) # make sure we have the upper bound yr[0] = min(y) # make sure we have the min self.original_y = y self.pct = pct self._truncated = truncate self.yr = yr self.yr_n = yr.size MapClassifier.__init__(self, yr) self.yb, self.counts = bin1d(y, self.bins) self.name = "FisherJenksSampled" self.y = y self._summary() # have to recalculate summary stats
def _set_bins(self): fj = FisherJenks(self.y, self.k) self.bins = fj.bins
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"k": kwargs.pop("k", self.k)}) kwargs.update({"pct": kwargs.pop("pct", self.pct)}) kwargs.update({"truncate": kwargs.pop("truncate", self._truncated)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class JenksCaspall(MapClassifier): """ Jenks Caspall Map Classification. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> jc = mapclassify.JenksCaspall(cal, k=5) >>> jc.bins array([1.81000e+00, 7.60000e+00, 2.98200e+01, 1.81270e+02, 4.11145e+03]) >>> jc.counts.tolist() [14, 13, 14, 10, 7] """
[docs] def __init__(self, y, k=K): self.k = k MapClassifier.__init__(self, y) self.name = "JenksCaspall"
def _set_bins(self): x = self.y.copy() k = self.k # start with quantiles q = quantile(x, k) solving = True xb, cnts = bin1d(x, q) # class means if x.ndim == 1: x.shape = (x.size, 1) n, k = x.shape xm = [np.median(x[xb == i]) for i in np.unique(xb)] xb0 = xb.copy() q = xm it = 0 rk = list(range(self.k)) while solving: xb = np.zeros(xb0.shape, int) d = abs(x - q) xb = d.argmin(axis=1) if (xb0 == xb).all(): solving = False else: xb0 = xb it += 1 q = np.array([np.median(x[xb == i]) for i in rk]) cuts = np.array([max(x[xb == i]) for i in np.unique(xb)]) cuts.shape = (len(cuts),) self.bins = cuts self.iterations = it
[docs] class JenksCaspallSampled(MapClassifier): """ Jenks Caspall Map Classification using a random sample. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. pct : float (default 0.10) The percentage of :math:`n` that should form the sample. If ``pct`` is specified such that :math:`n*pct > 1000`, then :math:`pct = 1000./n`. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> import numpy >>> cal = mapclassify.load_example() >>> numpy.random.seed(0) >>> x = numpy.random.random(100000) >>> jc = mapclassify.JenksCaspall(x) >>> jcs = mapclassify.JenksCaspallSampled(x) >>> jc.bins array([0.20108144, 0.4025151 , 0.60396127, 0.80302249, 0.99997795]) >>> jcs.bins array([0.19978245, 0.40793025, 0.59253555, 0.78241472, 0.99997795]) >>> jc.counts.tolist() [20286, 19951, 20310, 19708, 19745] >>> jcs.counts.tolist() [20147, 20633, 18591, 18857, 21772] # not for testing since we get different times on different hardware # just included for documentation of likely speed gains #>>> t1 = time.time(); jc = Jenks_Caspall(x); t2 = time.time() #>>> t1s = time.time(); jcs = Jenks_Caspall_Sampled(x); t2s = time.time() #>>> t2 - t1; t2s - t1s #1.8292930126190186 #0.061631917953491211 Notes ----- This is intended for large :math:`n` problems. The logic is to apply ``Jenks_Caspall`` to a random subset of the :math:`y` space and then bin the complete vector :math:`y` on the bins obtained from the subset. This would trade off some "accuracy" for a gain in speed. """
[docs] def __init__(self, y, k=K, pct=0.10): self.k = k n = y.size if pct * n > 1000: pct = 1000.0 / n ids = np.random.randint(0, n, int(n * pct)) y = np.asarray(y) yr = y[ids] yr[0] = max(y) # make sure we have the upper bound self.original_y = y self.pct = pct self.yr = yr self.yr_n = yr.size MapClassifier.__init__(self, yr) self.yb, self.counts = bin1d(y, self.bins) self.name = "JenksCaspallSampled" self.y = y self._summary() # have to recalculate summary stats
def _set_bins(self): jc = JenksCaspall(self.y, self.k) self.bins = jc.bins self.iterations = jc.iterations
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ kwargs.update({"k": kwargs.pop("k", self.k)}) kwargs.update({"pct": kwargs.pop("pct", self.pct)}) if inplace: self._update(y, **kwargs) else: new = copy.deepcopy(self) new._update(y, **kwargs) return new
[docs] class JenksCaspallForced(MapClassifier): """ Jenks Caspall Map Classification with forced movements. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default 5) The number of classes required. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> jcf = mapclassify.JenksCaspallForced(cal, k=5) >>> jcf.k 5 >>> jcf.bins array([1.34000e+00, 5.90000e+00, 1.67000e+01, 5.06500e+01, 4.11145e+03]) >>> jcf.counts.tolist() [12, 12, 13, 9, 12] >>> jcf4 = mapclassify.JenksCaspallForced(cal, k=4) >>> jcf4.k 4 >>> jcf4.bins array([2.51000e+00, 8.70000e+00, 3.66800e+01, 4.11145e+03]) >>> jcf4.counts.tolist() [15, 14, 14, 15] """
[docs] def __init__(self, y, k=K): if min(y) == max(y): raise ValueError( f"Not enough unique values in array to form {k} classes. " "All values in `y` are equal." ) self.k = k MapClassifier.__init__(self, y) self.name = "JenksCaspallForced"
def _set_bins(self): x = self.y.copy() k = self.k q = quantile(x, k) solving = True xb, cnt = bin1d(x, q) # class means if x.ndim == 1: x.shape = (x.size, 1) n, tmp = x.shape xm = [x[xb == i].mean() for i in np.unique(xb)] q = xm xbar = np.array([xm[xbi] for xbi in xb]) xbar.shape = (n, 1) ss = x - xbar ss *= ss ss = sum(ss) down_moves = up_moves = 0 solving = True it = 0 while solving: # try upward moves first moving_up = True while moving_up: class_ids = np.unique(xb) nk = [sum(xb == j) for j in class_ids] candidates = nk[:-1] i = 0 up_moves = 0 while candidates: nki = candidates.pop(0) if nki > 1: ids = np.nonzero(xb == class_ids[i]) mover = max(ids[0]) tmp = xb.copy() tmp[mover] = xb[mover] + 1 tm = [x[tmp == j].mean() for j in np.unique(tmp)] txbar = np.array([tm[xbi] for xbi in tmp]) txbar.shape = (n, 1) tss = x - txbar tss *= tss tss = sum(tss) if tss < ss: xb = tmp ss = tss candidates = [] up_moves += 1 i += 1 if not up_moves: moving_up = False moving_down = True while moving_down: class_ids = np.unique(xb) nk = [sum(xb == j) for j in class_ids] candidates = nk[1:] i = 1 down_moves = 0 while candidates: nki = candidates.pop(0) if nki > 1: ids = np.nonzero(xb == class_ids[i]) mover = min(ids[0]) mover_class = xb[mover] target_class = mover_class - 1 tmp = xb.copy() tmp[mover] = target_class tm = [x[tmp == j].mean() for j in np.unique(tmp)] txbar = np.array([tm[xbi] for xbi in tmp]) txbar.shape = (n, 1) tss = x - txbar tss *= tss tss = sum(tss) if tss < ss: xb = tmp ss = tss candidates = [] down_moves += 1 i += 1 if not down_moves: moving_down = False if not up_moves and not down_moves: solving = False it += 1 cuts = [max(x[xb == c]) for c in np.unique(xb)] cuts = np.reshape(np.array(cuts), (k,)) self.bins = cuts self.iterations = it
[docs] class UserDefined(MapClassifier): """ User Specified Binning. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. bins : numpy.array :math:`(k,1)`, upper bounds of classes (have to be monotically increasing). lowest : float (default None) Scalar minimum value of lowest class. Default is to set the minimum to ``-inf`` if ``y.min()`` > first upper bound (which will override the default), otherwise minimum is set to ``y.min()``. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> bins = [20, max(cal)] >>> bins [20, 4111.45] >>> ud = mapclassify.UserDefined(cal, bins) >>> ud.bins.tolist() [20.0, 4111.45] >>> ud.counts.tolist() [37, 21] >>> bins = [20, 30] >>> ud = mapclassify.UserDefined(cal, bins) >>> ud.bins.tolist() [20.0, 30.0, 4111.45] >>> ud.counts.tolist() [37, 4, 17] Notes ----- If upper bound of user bins does not exceed ``max(y)`` we append an additional bin. """
[docs] def __init__(self, y, bins, lowest=None): if bins[-1] < max(y): bins = np.append(bins, max(y)) self.lowest = lowest self.k = len(bins) self.bins = np.array(bins) self.y = y MapClassifier.__init__(self, y) self.name = "UserDefined"
def _set_bins(self): pass def _update(self, y=None, bins=None): if y is not None: if hasattr(y, "values"): y = y.values y = np.append(y.flatten(), self.y) else: y = self.y if bins is None: bins = self.bins self.__init__(y, bins)
[docs] def update(self, y=None, inplace=False, **kwargs): """ Add data or change classification parameters. Parameters ---------- y : numpy.array (default None) :math:`(n,1)`, array of data to classify. inplace : bool (default False) Whether to conduct the update in place or to return a copy estimated from the additional specifications. **kwargs : dict Additional parameters that are passed to the ``__init__`` function of the class. For documentation, check the class constructor. """ bins = kwargs.pop("bins", self.bins) if inplace: self._update(y=y, bins=bins, **kwargs) else: new = copy.deepcopy(self) new._update(y, bins, **kwargs) return new
# We have to override the plot method for additional kwargs for UserDefined
[docs] def plot( self, gdf, border_color="lightgray", border_width=0.10, title=None, legend=False, cmap="YlGnBu", axis_on=True, legend_kwds={"loc": "lower right", "fmt": FMT}, file_name=None, dpi=600, ax=None, ): try: import matplotlib.pyplot as plt except ImportError: raise ImportError( "Mapclassify.plot depends on matplotlib.pyplot, and this was" "not able to be imported. \nInstall matplotlib to" "plot spatial classifier." ) from None if ax is None: f = plt.figure() ax = plt.gca() else: f = plt.gcf() if "fmt" in legend_kwds: legend_kwds.pop("fmt") ax = gdf.assign(_cl=self.y).plot( column="_cl", ax=ax, cmap=cmap, edgecolor=border_color, linewidth=border_width, scheme=self.name, legend=legend, legend_kwds=legend_kwds, classification_kwds={"bins": self.bins}, # for UserDefined ) if not axis_on: ax.axis("off") if title: f.suptitle(title) if file_name: plt.savefig(file_name, dpi=dpi) return f, ax
[docs] class MaxP(MapClassifier): """ MaxP Map Classification. Based on Max-p regionalization algorithm. Parameters ---------- y : numpy.array :math:`(n,1)`, values to classify. k : int (default K==5) Number of classes required. initial : int (default 1000) Number of initial solutions to use prior to swapping. seed1 : int (default 0) Random state for initial building process. seed2 : int (default 1) Random state for swapping process. Attributes ---------- yb : numpy.array :math:`(n,1)`, bin IDs for observations. bins : numpy.array :math:`(k,1)`, the upper bounds of each class. k : int The number of classes. counts : numpy.array :math:`(k,1)`, the number of observations falling in each class. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> mp = mapclassify.MaxP(cal) >>> mp.bins array([3.16000e+00, 1.26300e+01, 1.67000e+01, 2.04700e+01, 4.11145e+03]) >>> mp.counts.tolist() [18, 16, 3, 1, 20] """
[docs] def __init__(self, y, k=K, initial=1000, seed1=0, seed2=1): if min(y) == max(y): raise ValueError( f"Not enough unique values in array to form {k} classes. " "All values in `y` are equal." ) self.k = k self.initial = initial self.seed1 = seed1 self.seed2 = seed2 MapClassifier.__init__(self, y) self.name = "MaxP"
def _set_bins(self): x = self.y.copy() k = self.k q = quantile(x, k) if x.ndim == 1: x.shape = (x.size, 1) n, tmp = x.shape x.sort(axis=0) # find best of initial solutions solution = 0 best_tss = x.var() * x.shape[0] tss_all = np.zeros((self.initial, 1)) while solution < self.initial: remaining = list(range(n)) seeds = [ np.nonzero(di == min(di))[0][0] for di in [np.abs(x - qi) for qi in q] ] np.random.seed(self.seed1) rseeds = np.random.permutation(list(range(k))).tolist() [remaining.remove(seed) for seed in seeds] self.classes = classes = [] [classes.append([seed]) for seed in seeds] while rseeds: seed_id = rseeds.pop() current = classes[seed_id] growing = True while growing: current = classes[seed_id] low = current[0] high = current[-1] left = low - 1 right = high + 1 move_made = False if left in remaining: current.insert(0, left) remaining.remove(left) move_made = True if right in remaining: current.append(right) remaining.remove(right) move_made = True if move_made: classes[seed_id] = current else: growing = False tss = _fit(self.y, classes) tss_all[solution] = tss if tss < best_tss: best_solution = classes best_it = solution best_tss = tss solution += 1 classes = best_solution self.best_it = best_it self.tss = best_tss self.a2c = a2c = {} self.tss_all = tss_all for r, cl in enumerate(classes): for a in cl: a2c[a] = r swapping = True while swapping: np.random.seed(self.seed2) rseeds = np.random.permutation(list(range(k))).tolist() total_moves = 0 while rseeds: _id = rseeds.pop() growing = True total_moves = 0 while growing: target = classes[_id] left = target[0] - 1 right = target[-1] + 1 n_moves = 0 if left in a2c: left_class = classes[a2c[left]] if len(left_class) > 1: a = left_class[-1] if self._swap(left_class, target, a): target.insert(0, a) left_class.remove(a) a2c[a] = _id n_moves += 1 if right in a2c: right_class = classes[a2c[right]] if len(right_class) > 1: a = right_class[0] if self._swap(right_class, target, a): target.append(a) right_class.remove(a) n_moves += 1 a2c[a] = _id if not n_moves: growing = False total_moves += n_moves if not total_moves: swapping = False xs = self.y.copy() xs.sort() self.bins = np.array([xs[cl][-1] for cl in classes]) def _ss(self, class_def): """Calculates sum of squares for a class.""" yc = self.y[class_def] css = yc - yc.mean() css *= css return sum(css) def _swap(self, class1, class2, a): """Evaluate cost of moving ``a`` from ``class1`` to ``class2``.""" ss1 = self._ss(class1) ss2 = self._ss(class2) tss1 = ss1 + ss2 class1c = copy.copy(class1) class2c = copy.copy(class2) class1c.remove(a) class2c.append(a) ss1 = self._ss(class1c) ss2 = self._ss(class2c) tss2 = ss1 + ss2 return False if tss1 < tss2 else True # noqa SIM211
def _fit(y, classes): """Calculate the total sum of squares for a vector :math:`y` classified into classes. Parameters ---------- y : numpy.array :math:`(n,1)`, variable to be classified. classes : array :math:`(k,1)`, integer values denoting class membership. """ tss = 0 for class_def in classes: yc = y[class_def] css = yc - yc.mean() css *= css tss += sum(css) return tss kmethods = {} kmethods["Quantiles"] = Quantiles kmethods["FisherJenks"] = FisherJenks kmethods["NaturalBreaks"] = NaturalBreaks kmethods["MaximumBreaks"] = MaximumBreaks
[docs] def gadf(y, method="Quantiles", maxk=15, pct=0.8): r""" Evaluate the Goodness of Absolute Deviation Fit (*GADF*) of a classifier and find the minimum value of :math:`k` for which ``gadf > pct``. Parameters ---------- y : numpy.array :math:`(n, 1)`, values to be classified. method : str (default 'Quantiles') The classification method in: ``{'Quantiles', 'Fisher_Jenks', 'Maximum_Breaks', 'Natrual_Breaks'}``. maxk : int (default 15) Maximum value of :math:`k` to evaluate. pct : float (default 0.8) The percentage of *GADF* to exceed. Returns ------- k : int Number of classes. cl : object Instance of the classifier at :math:`k`. gadf : float Goodness of absolute deviation fit (*GADF*). Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> qgadf = mapclassify.classifiers.gadf(cal) >>> qgadf[0] 15 >>> float(qgadf[-1]) 0.3740257590909283 Quantiles fail to exceed 0.80 before 15 classes. If we lower the bar to 0.2 we see quintiles as a result >>> qgadf2 = mapclassify.classifiers.gadf(cal, pct = 0.2) >>> qgadf2[0] 5 >>> float(qgadf2[-1]) 0.21710231966462412 Notes ----- The *GADF* is defined as: .. math:: GADF = 1 - \sum_c \sum_{i \in c} |y_i - y_{c,med}| / \sum_i |y_i - y_{med}| where :math:`y_{med}` is the global median and :math:`y_{c,med}` is the median for class :math:`c`. See Also -------- KClassifiers """ y = np.array(y) adam = (np.abs(y - np.median(y))).sum() for k in range(2, maxk + 1): cl = kmethods[method](y, k) gadf = 1 - cl.adcm / adam if gadf > pct: break return (k, cl, gadf)
[docs] class KClassifiers: """ Evaluate all :math:`k`-classifers and pick optimal based on :math:`k` and *GADF*. Parameters ---------- y : numpy.array :math:`(n,1)`, values to be classified. pct : float (default 0.8) The percentage of *GADF* to exceed. Attributes ---------- best : MapClassifier Instance of the optimal ``MapClassifier``. results : dict Keys are classifier names, values are the ``MapClassifier`` instances with the best ``pct`` for each classifier. Examples -------- >>> import mapclassify >>> cal = mapclassify.load_example() >>> ks = mapclassify.classifiers.KClassifiers(cal) >>> ks.best.name 'FisherJenks' >>> ks.best.k 4 >>> float(ks.best.gadf) 0.8481032719908105 Notes ----- This can be used to suggest a classification scheme. See Also -------- gadf """
[docs] def __init__(self, y, pct=0.8): results = {} best = gadf(y, "FisherJenks", maxk=len(y) - 1, pct=pct) pct0 = best[0] k0 = best[-1] keys = list(kmethods.keys()) keys.remove("FisherJenks") results["FisherJenks"] = best for method in keys: results[method] = gadf(y, method, maxk=len(y) - 1, pct=pct) k1 = results[method][0] pct1 = results[method][-1] if (k1 < k0) or (k1 == k0 and pct0 < pct1): best = results[method] k0 = k1 pct0 = pct1 self.results = results self.best = best[1]