mapclassify.EqualInterval¶
- class mapclassify.EqualInterval(y, k=5)[source]¶
Equal Interval Classification.
- Parameters:
- y
numpy.array
\((n,1)\), values to classify.
- k
int
(default
5) The number of classes required.
- y
- Attributes:
- yb
numpy.array
\((n,1)\), bin IDs for observations. Each value is the ID of the class the observation belongs to \(yb[i] = j\) for \(j>=1\) if \(bins[j-1] < y[i] <= bins[j]\), otherwise \(yb[i] = 0\).
- bins
numpy.array
\((k,1)\), the upper bounds of each class.
- k
int
The number of classes.
- counts
numpy.array
\((k,1)\), the number of observations falling in each class.
- yb
Notes
Intervals defined to have equal width:
\[bins_j = min(y)+w*(j+1)\]with \(w=\frac{max(y)-min(j)}{k}\)
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> ei = mapclassify.EqualInterval(cal, k=5) >>> ei.k 5
>>> ei.counts.tolist() [57, 0, 0, 0, 1]
>>> ei.bins array([ 822.394, 1644.658, 2466.922, 3289.186, 4111.45 ])
Methods
__init__
(y[, k])see class docstring
find_bin
(x)Sort input or inputs according to the current bin estimate.
get_adcm
()Absolute deviation around class median (ADCM).
get_fmt
()get_gadf
()Goodness of absolute deviation of fit.
get_legend_classes
([fmt])Format the strings for the classes on the legend.
get_tss
()Returns sum of squares over all class means.
make
(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot
(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram
([color, linecolor, ...])Plot histogram of y with bin values superimposed
set_fmt
(fmt)table
()update
([y, inplace])Add data or change classification parameters.
Attributes
fmt