mapclassify.FisherJenks¶
- class mapclassify.FisherJenks(y, k=5)[source]¶
Fisher Jenks optimal classifier - mean based.
- Parameters:
- y
numpy.array \((n,1)\), values to classify.
- k
int(default5) The number of classes required.
- y
- Attributes:
- yb
numpy.array \((n,1)\), bin IDs for observations.
- bins
numpy.array \((k,1)\), the upper bounds of each class.
- k
int The number of classes.
- counts
numpy.array \((k,1)\), the number of observations falling in each class.
- yb
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> fj = mapclassify.FisherJenks(cal) >>> float(fj.adcm) 799.24
>>> fj.bins.tolist() [75.29, 192.05, 370.5, 722.85, 4111.45]
>>> fj.counts.tolist() [49, 3, 4, 1, 1]
Methods
__init__(y[, k])find_bin(x)Sort input or inputs according to the current bin estimate.
get_adcm()Absolute deviation around class median (ADCM).
get_fmt()get_gadf()Goodness of absolute deviation of fit.
get_legend_classes([fmt])Format the strings for the classes on the legend.
get_tss()Returns sum of squares over all class means.
make(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram([color, linecolor, ...])Plot histogram of y with bin values superimposed
plot_legendgram(*[, ax, cmap, bins, inset, ...])Plot a legendgram, which is a histogram with classification breaks.
set_fmt(fmt)table()update([y, inplace])Add data or change classification parameters.
Attributes
fmt