mapclassify.MaxP¶
- class mapclassify.MaxP(y, k=5, initial=1000, seed1=0, seed2=1)[source]¶
MaxP Map Classification. Based on Max-p regionalization algorithm.
- Parameters:
- y
numpy.array \((n,1)\), values to classify.
- k
int(defaultK==5) Number of classes required.
- initial
int(default1000) Number of initial solutions to use prior to swapping.
- seed1
int(default0) Random state for initial building process.
- seed2
int(default1) Random state for swapping process.
- y
- Attributes:
- yb
numpy.array \((n,1)\), bin IDs for observations.
- bins
numpy.array \((k,1)\), the upper bounds of each class.
- k
int The number of classes.
- counts
numpy.array \((k,1)\), the number of observations falling in each class.
- yb
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> mp = mapclassify.MaxP(cal) >>> mp.bins array([3.16000e+00, 1.26300e+01, 1.67000e+01, 2.04700e+01, 4.11145e+03])
>>> mp.counts.tolist() [18, 16, 3, 1, 20]
Methods
__init__(y[, k, initial, seed1, seed2])find_bin(x)Sort input or inputs according to the current bin estimate.
get_adcm()Absolute deviation around class median (ADCM).
get_fmt()get_gadf()Goodness of absolute deviation of fit.
get_legend_classes([fmt])Format the strings for the classes on the legend.
get_tss()Returns sum of squares over all class means.
make(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram([color, linecolor, ...])Plot histogram of y with bin values superimposed
plot_legendgram(*[, ax, cmap, bins, inset, ...])Plot a legendgram, which is a histogram with classification breaks.
set_fmt(fmt)table()update([y, inplace])Add data or change classification parameters.
Attributes
fmt