mapclassify.MaxP¶
- class mapclassify.MaxP(y, k=5, initial=1000, seed1=0, seed2=1)[source]¶
MaxP Map Classification. Based on Max-p regionalization algorithm.
- Parameters:
- y
numpy.array
\((n,1)\), values to classify.
- k
int
(default
K==5) Number of classes required.
- initial
int
(default
1000) Number of initial solutions to use prior to swapping.
- seed1
int
(default
0) Random state for initial building process.
- seed2
int
(default
1) Random state for swapping process.
- y
- Attributes:
- yb
numpy.array
\((n,1)\), bin IDs for observations.
- bins
numpy.array
\((k,1)\), the upper bounds of each class.
- k
int
The number of classes.
- counts
numpy.array
\((k,1)\), the number of observations falling in each class.
- yb
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> mp = mapclassify.MaxP(cal) >>> mp.bins array([3.16000e+00, 1.26300e+01, 1.67000e+01, 2.04700e+01, 4.11145e+03])
>>> mp.counts.tolist() [18, 16, 3, 1, 20]
Methods
__init__
(y[, k, initial, seed1, seed2])find_bin
(x)Sort input or inputs according to the current bin estimate.
get_adcm
()Absolute deviation around class median (ADCM).
get_fmt
()get_gadf
()Goodness of absolute deviation of fit.
get_legend_classes
([fmt])Format the strings for the classes on the legend.
get_tss
()Returns sum of squares over all class means.
make
(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot
(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram
([color, linecolor, ...])Plot histogram of y with bin values superimposed
set_fmt
(fmt)table
()update
([y, inplace])Add data or change classification parameters.
Attributes
fmt