mapclassify.Quantiles¶
- class mapclassify.Quantiles(y, k=5)[source]¶
Quantile Map Classification.
- Parameters:
- y
numpy.array
\((n,1)\), values to classify.
- k
int
(default
5) The number of classes required.
- y
- Attributes:
- yb
numpy.array
\((n,1)\), bin IDs for observations. Each value is the ID of the class the observation belongs to \(yb[i] = j\) for \(j>=1\) if \(bins[j-1] < y[i] <= bins[j]\), otherwise \(yb[i] = 0\).
- bins
numpy.array
\((k,1)\), the upper bounds of each class.
- k
int
The number of classes.
- counts
numpy.array
\((k,1)\), the number of observations falling in each class.
- yb
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> q = mapclassify.Quantiles(cal, k=5) >>> q.bins array([1.46400e+00, 5.79800e+00, 1.32780e+01, 5.46160e+01, 4.11145e+03])
>>> q.counts.tolist() [12, 11, 12, 11, 12]
Methods
__init__
(y[, k])find_bin
(x)Sort input or inputs according to the current bin estimate.
get_adcm
()Absolute deviation around class median (ADCM).
get_fmt
()get_gadf
()Goodness of absolute deviation of fit.
get_legend_classes
([fmt])Format the strings for the classes on the legend.
get_tss
()Returns sum of squares over all class means.
make
(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot
(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram
([color, linecolor, ...])Plot histogram of y with bin values superimposed
set_fmt
(fmt)table
()update
([y, inplace])Add data or change classification parameters.
Attributes
fmt