mapclassify.StdMean¶
- class mapclassify.StdMean(y, multiples=[-2, -1, 1, 2], anchor=False)[source]¶
Standard Deviation and Mean Map Classification.
- Parameters:
- y
numpy.array
\((n,1)\), values to classify
- multiples
numpy.array
(default
[-2, -1, 1, 2]) The multiples of the standard deviation to add/subtract from the sample mean to define the bins.
- anchorbool (
default
False
) Anchor upper bound of one class to the sample mean.
- y
- Attributes:
- yb
numpy.array
\((n,1)\), bin IDs for observations.
- bins
numpy.array
\((k,1)\), the upper bounds of each class.
- k
int
The number of classes.
- counts
numpy.array
\((k,1)\), the number of observations falling in each class.
- yb
Notes
If anchor is True, one of the intervals will have its closed upper bound equal to the mean of y. Intermediate intervals will have widths equal to the standard deviation of y. The first interval will be closed on the minimum value of y, and the last interval will be closed on the maximum of y. The first and last intervals may have widths different from the intermediate intervals.
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> st = mapclassify.StdMean(cal) >>> st.k 5
>>> st.bins array([-967.36235382, -420.71712519, 672.57333208, 1219.21856072, 4111.45 ])
>>> st.counts.tolist() [0, 0, 56, 1, 1]
>>> st3 = mapclassify.StdMean(cal, multiples = [-3, -1.5, 1.5, 3]) >>> st3.bins array([-1514.00758246, -694.03973951, 945.8959464 , 1765.86378936, 4111.45 ])
>>> st3.counts.tolist() [0, 0, 57, 0, 1] >>> stda = mapclassify.StdMean(cal, anchor=True) >>> stda.k 9 >>> stda.bins array([ 125.92810345, 672.57333208, 1219.21856072, 1765.86378936, 2312.50901799, 2859.15424663, 3405.79947527, 3952.4447039 , 4111.45 ]) >>> float(cal.mean()), float(cal.std()), float(cal.min()), float(cal.max()) (125.92810344827588, 546.6452286365233, 0.13, 4111.45)
Methods
__init__
(y[, multiples, anchor])find_bin
(x)Sort input or inputs according to the current bin estimate.
get_adcm
()Absolute deviation around class median (ADCM).
get_fmt
()get_gadf
()Goodness of absolute deviation of fit.
get_legend_classes
([fmt])Format the strings for the classes on the legend.
get_tss
()Returns sum of squares over all class means.
make
(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot
(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram
([color, linecolor, ...])Plot histogram of y with bin values superimposed
set_fmt
(fmt)table
()update
([y, inplace])Add data or change classification parameters.
Attributes
fmt
- update(y=None, inplace=False, **kwargs)[source]¶
Add data or change classification parameters.
- Parameters:
- y
numpy.array
(default
None
) \((n,1)\), array of data to classify.
- inplacebool (
default
False
) Whether to conduct the update in place or to return a copy estimated from the additional specifications.
- **kwargs
dict
Additional parameters that are passed to the
__init__
function of the class. For documentation, check the class constructor.
- y