mapclassify.JenksCaspallForced¶
- class mapclassify.JenksCaspallForced(y, k=5)[source]¶
Jenks Caspall Map Classification with forced movements.
- Parameters:
- y
numpy.array
\((n,1)\), values to classify.
- k
int
(default
5) The number of classes required.
- y
- Attributes:
- yb
numpy.array
\((n,1)\), bin IDs for observations.
- bins
numpy.array
\((k,1)\), the upper bounds of each class.
- k
int
The number of classes.
- counts
numpy.array
\((k,1)\), the number of observations falling in each class.
- yb
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> jcf = mapclassify.JenksCaspallForced(cal, k=5) >>> jcf.k 5
>>> jcf.bins array([1.34000e+00, 5.90000e+00, 1.67000e+01, 5.06500e+01, 4.11145e+03])
>>> jcf.counts.tolist() [12, 12, 13, 9, 12]
>>> jcf4 = mapclassify.JenksCaspallForced(cal, k=4) >>> jcf4.k 4
>>> jcf4.bins array([2.51000e+00, 8.70000e+00, 3.66800e+01, 4.11145e+03])
>>> jcf4.counts.tolist() [15, 14, 14, 15]
Methods
__init__
(y[, k])find_bin
(x)Sort input or inputs according to the current bin estimate.
get_adcm
()Absolute deviation around class median (ADCM).
get_fmt
()get_gadf
()Goodness of absolute deviation of fit.
get_legend_classes
([fmt])Format the strings for the classes on the legend.
get_tss
()Returns sum of squares over all class means.
make
(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot
(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram
([color, linecolor, ...])Plot histogram of y with bin values superimposed
set_fmt
(fmt)table
()update
([y, inplace])Add data or change classification parameters.
Attributes
fmt