mapclassify.KClassifiers¶
- class mapclassify.KClassifiers(y, pct=0.8)[source]¶
Evaluate all \(k\)-classifers and pick optimal based on \(k\) and GADF.
- Parameters:
- y
numpy.array
\((n,1)\), values to be classified.
- pct
float
(default
0.8) The percentage of GADF to exceed.
- y
- Attributes:
- best
MapClassifier
Instance of the optimal
MapClassifier
.- results
dict
Keys are classifier names, values are the
MapClassifier
instances with the bestpct
for each classifier.
- best
See also
Notes
This can be used to suggest a classification scheme.
Examples
>>> import mapclassify >>> cal = mapclassify.load_example() >>> ks = mapclassify.classifiers.KClassifiers(cal) >>> ks.best.name 'FisherJenks'
>>> ks.best.k 4
>>> float(ks.best.gadf) 0.8481032719908105
Methods
__init__
(y[, pct])