mapclassify.FisherJenksSampled¶
- class mapclassify.FisherJenksSampled(y, k=5, pct=0.1, truncate=True)[source]¶
Fisher Jenks optimal classifier - mean based using random sample.
- Parameters:
- y
numpy.array \((n,1)\), values to classify.
- k
int(default5) The number of classes required.
- pct
float(default0.10) The percentage of \(n\) that should form the sample. If
pctis specified such that \(n*pct > 1000\), then \(pct = 1000./n\), unless truncate isFalse.- truncatebool (
defaultTrue) Truncate
pctin cases where \(pct * n > 1000.\).
- y
- Attributes:
- yb
numpy.array \((n,1)\), bin IDs for observations.
- bins
numpy.array \((k,1)\), the upper bounds of each class.
- k
int The number of classes.
- counts
numpy.array \((k,1)\), the number of observations falling in each class.
- yb
Notes
For theoretical details see [RSL16].
Methods
__init__(y[, k, pct, truncate])find_bin(x)Sort input or inputs according to the current bin estimate.
get_adcm()Absolute deviation around class median (ADCM).
get_fmt()get_gadf()Goodness of absolute deviation of fit.
get_legend_classes([fmt])Format the strings for the classes on the legend.
get_tss()Returns sum of squares over all class means.
make(*args, **kwargs)Configure and create a classifier that will consume data and produce classifications, given the configuration options specified by this function.
plot(gdf[, border_color, border_width, ...])Plot a mapclassifier object.
plot_histogram([color, linecolor, ...])Plot histogram of y with bin values superimposed
plot_legendgram(*[, ax, cmap, bins, inset, ...])Plot a legendgram, which is a histogram with classification breaks.
set_fmt(fmt)table()update([y, inplace])Add data or change classification parameters.
Attributes
fmt- update(y=None, inplace=False, **kwargs)[source]¶
Add data or change classification parameters.
- Parameters:
- y
numpy.array(defaultNone) \((n,1)\), array of data to classify.
- inplacebool (
defaultFalse) Whether to conduct the update in place or to return a copy estimated from the additional specifications.
- **kwargs
dict Additional parameters that are passed to the
__init__function of the class. For documentation, check the class constructor.
- y