References

ANCdCF06

RM Assunção, MC Neves, G Câmara, and C da Costa Freitas. Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. IJGIS, 20(7):797–811, 2006. doi:10.1080/13658810600665111.

DAR12

JC Duque, L Anselin, and SJ Rey. The max-p-regions problem*. Journal of Regional Science, 52(3):397–419, 2012. doi:10.1111/j.1467-9787.2011.00743.x.

DCM11

JC Duque, RL Church, and RS Middleton. The p-regions problem. Geographical Analysis, 43(1):104–126, 2011. doi:10.1111/j.1538-4632.2010.00810.x.

Ope77

S Openshaw. A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modelling. Transactions of the Institute of British Geographers, pages 459–472, 1977. doi:doi.org/10.2307/622300.

OR95

S Openshaw and L Rao. Algorithms for reengineering 1991 census geography. Environment and Planning A, 27(3):425–446, 1995. doi:10.1068/a270425.

WRK20

R Wei, SJ Rey, and E Knaap. Efficient regionalization for spatially explicit neighborhood delineation. International Journal of Geographical Information Science, pages 1–17, 2020. doi:10.1080/13658816.2020.1759806.

Wol18

LJ Wolf. ljwolf/spenc: GISRUK. 2018. doi:10.5281/zenodo.1219904.

Wol21

LJ Wolf. Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization. International Journal of Geographical Information Science, 0(0):1–18, 2021. doi:10.1080/13658816.2021.1934475.