References

AssunccaoNCamaradCF06

Renato M Assunção, Marcos Corrêa Neves, Gilberto Câmara, and Corina da Costa Freitas. Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science, 20(7):797–811, 2006.

DCM11

Juan C Duque, Richard L Church, and Richard S Middleton. The p-regions problem. Geographical Analysis, 43(1):104–126, 2011.

DAR12

Juan C. Duque, Luc Anselin, and Sergio J. Rey. The max-p-regions problem*. Journal of Regional Science, 52(3):397–419, 2012. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9787.2011.00743.x, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9787.2011.00743.x, doi:https://doi.org/10.1111/j.1467-9787.2011.00743.x.

Ope77

Stan Openshaw. A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modelling. Transactions of the Institute of British Geographers, pages 459–472, 1977.

OR95

Stan Openshaw and Liang Rao. Algorithms for reengineering 1991 census geography. Environment and Planning A, 27(3):425–446, 1995.

WRK20

Ran Wei, Sergio Rey, and Elijah Knaap. Efficient regionalization for spatially explicit neighborhood delineation. International Journal of Geographical Information Science, pages 1–17, 2020.