esda.silhouettes.silhouette_alist¶
- esda.silhouettes.silhouette_alist(data, labels, alist, indices=None, metric=<function euclidean_distances>)[source]¶
Compute the silhouette for each edge in an adjacency graph. Given the alist containing focal id, neighbor id, and label_focal, and label_neighbor, this computes:
\[d(i,label_neighbor) - d(i,label_focal) / (max(d(i,label_neighbor), d(i,label_focal)))\]- Parameters:
- data(N,P)
array
to
clusteron
orDataFrame
indexed
on
the
same
values
as
that in alist.focal/alist.neighbor
- labels: (N,) array containing classifications, indexed on the same values
as that in alist.focal/alist.neighbor
- alist: adjacency list containing columns focal & neighbor,
describing one edge of the graph.
- indices: (N,) array containing the “name” for observations in
alist to be linked to data. indices should be: 1. aligned with data by iteration order 2. include all values in the alist.focal set. if alist.focal and alist.neighbor are strings, then indices should be a list/array of strings aligned with the rows of data. if not provided and labels is a series/dataframe, then its index will be used.
- metric
callable()
, array, a function that takes an argument (data) and returns the all-pairs distances/dissimilarity between observations.
- data(N,P)