Source code for esda.moran

"""
Moran's I Spatial Autocorrelation Statistics

"""

__author__ = (
    "Sergio J. Rey <srey@asu.edu>, "
    "Dani Arribas-Bel <daniel.arribas.bel@gmail.com>, "
    "Levi John Wolf <levi.john.wolf@gmail.com>"
)

from warnings import simplefilter

import numpy as np
import pandas as pd
import scipy.stats as stats
from libpysal.weights import W
from libpysal.weights.spatial_lag import lag_spatial
from matplotlib import colors
from scipy import sparse

from .crand import _prepare_univariate
from .crand import crand as _crand_plus
from .crand import njit as _njit
from .smoothing import assuncao_rate
from .tabular import _bivariate_handler, _univariate_handler

__all__ = [
    "Moran",
    "Moran_Local",
    "Moran_BV",
    "Moran_BV_matrix",
    "Moran_Local_BV",
    "Moran_Rate",
    "Moran_Local_Rate",
]

PERMUTATIONS = 999


def _slag(w, y):
    """Helper to compute lag either for W or for Graph"""
    if isinstance(w, W):
        return lag_spatial(w, y)
    else:
        return w.lag(y)


def _transform(w, transformation):
    """Helper to transform W or Graph"""
    if isinstance(w, W):
        w.transform = transformation
        return w
    else:
        return w.transform(transformation)


[docs] class Moran: """Moran's I Global Autocorrelation Statistic Parameters ---------- y : array variable measured across n spatial units w : W | Graph spatial weights instance as W or Graph aligned with y transformation : string weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. permutations : int number of random permutations for calculation of pseudo-p_values two_tailed : boolean If True (default) analytical p-values for Moran are two tailed, otherwise if False, they are one-tailed. Attributes ---------- y : array original variable w : W | Graph original w object permutations : int number of permutations I : float value of Moran's I EI : float expected value under normality assumption VI_norm : float variance of I under normality assumption seI_norm : float standard deviation of I under normality assumption z_norm : float z-value of I under normality assumption p_norm : float p-value of I under normality assumption VI_rand : float variance of I under randomization assumption seI_rand : float standard deviation of I under randomization assumption z_rand : float z-value of I under randomization assumption p_rand : float p-value of I under randomization assumption two_tailed : boolean If True p_norm and p_rand are two-tailed, otherwise they are one-tailed. sim : array (if permutations>0) vector of I values for permuted samples p_sim : array (if permutations>0) p-value based on permutations (one-tailed) null: spatial randomness alternative: the observed I is extreme if it is either extremely greater or extremely lower than the values obtained based on permutations EI_sim : float (if permutations>0) average value of I from permutations VI_sim : float (if permutations>0) variance of I from permutations seI_sim : float (if permutations>0) standard deviation of I under permutations. z_sim : float (if permutations>0) standardized I based on permutations p_z_sim : float (if permutations>0) p-value based on standard normal approximation from permutations Notes ----- Technical details and derivations can be found in :cite:`cliff81`. Examples -------- >>> import libpysal >>> w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("stl_hom.txt")) >>> y = np.array(f.by_col['HR8893']) >>> from esda.moran import Moran >>> mi = Moran(y, w) >>> round(mi.I, 3) 0.244 >>> mi.EI -0.012987012987012988 >>> mi.p_norm 0.00027147862770937614 SIDS example replicating OpenGeoda >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> SIDR = np.array(f.by_col("SIDR74")) >>> mi = Moran(SIDR, w) >>> round(mi.I, 3) 0.248 >>> mi.p_norm 0.0001158330781489969 One-tailed >>> mi_1 = Moran(SIDR, w, two_tailed=False) >>> round(mi_1.I, 3) 0.248 >>> round(mi_1.p_norm, 4) 0.0001 """
[docs] def __init__( self, y, w, transformation="r", permutations=PERMUTATIONS, two_tailed=True ): y = np.asarray(y).flatten() self.y = y w = _transform(w, transformation) self.w = w self.permutations = permutations self.__moments() self.I = self.__calc(self.z) # noqa: E741 self.z_norm = (self.I - self.EI) / self.seI_norm self.z_rand = (self.I - self.EI) / self.seI_rand if self.z_norm > 0: self.p_norm = stats.norm.sf(self.z_norm) self.p_rand = stats.norm.sf(self.z_rand) else: self.p_norm = stats.norm.cdf(self.z_norm) self.p_rand = stats.norm.cdf(self.z_rand) if two_tailed: self.p_norm *= 2.0 self.p_rand *= 2.0 if permutations: sim = [ self.__calc(np.random.permutation(self.z)) for i in range(permutations) ] self.sim = sim = np.array(sim) above = sim >= self.I larger = above.sum() if (self.permutations - larger) < larger: larger = self.permutations - larger self.p_sim = (larger + 1.0) / (permutations + 1.0) self.EI_sim = sim.sum() / permutations self.seI_sim = np.array(sim).std() self.VI_sim = self.seI_sim**2 self.z_sim = (self.I - self.EI_sim) / self.seI_sim if self.z_sim > 0: self.p_z_sim = stats.norm.sf(self.z_sim) else: self.p_z_sim = stats.norm.cdf(self.z_sim) # provide .z attribute that is znormalized sy = y.std() self.z /= sy
def __moments(self): self.n = len(self.y) y = self.y z = y - y.mean() self.z = z self.z2ss = (z * z).sum() self.EI = -1.0 / (self.n - 1) n = self.n n2 = n * n if isinstance(self.w, W): s1 = self.w.s1 s0 = self.w.s0 s2 = self.w.s2 else: self.summary = self.w.summary() s1 = self.summary.s1 s0 = self.summary.s0 s2 = self.summary.s2 s02 = s0 * s0 v_num = n2 * s1 - n * s2 + 3 * s02 v_den = (n - 1) * (n + 1) * s02 self.VI_norm = v_num / v_den - (1.0 / (n - 1)) ** 2 self.seI_norm = self.VI_norm ** (1 / 2.0) # variance under randomization xd4 = z**4 xd2 = z**2 k_num = xd4.sum() / n k_den = (xd2.sum() / n) ** 2 k = k_num / k_den EI = self.EI A = n * ((n2 - 3 * n + 3) * s1 - n * s2 + 3 * s02) B = k * ((n2 - n) * s1 - 2 * n * s2 + 6 * s02) VIR = (A - B) / ((n - 1) * (n - 2) * (n - 3) * s02) - EI * EI self.VI_rand = VIR self.seI_rand = VIR ** (1 / 2.0) def __calc(self, z): zl = _slag(self.w, z) inum = (z * zl).sum() s0 = self.w.s0 if isinstance(self.w, W) else self.summary.s0 return self.n / s0 * inum / self.z2ss @property def _statistic(self): """More consistent hidden attribute to access ESDA statistics""" return self.I
[docs] @classmethod def by_col( cls, df, cols, w=None, inplace=False, pvalue="sim", outvals=None, **stat_kws ): """ Function to compute a Moran statistic on a dataframe Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran statistic **stat_kws : dict options to pass to the underlying statistic. For this, see the documentation for the Moran statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ return _univariate_handler( df, cols, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, stat=cls, swapname=cls.__name__.lower(), **stat_kws, )
[docs] class Moran_BV: # noqa: N801 """ Bivariate Moran's I Parameters ---------- x : array x-axis variable y : array wy will be on y axis w : W | Graph spatial weights instance as W or Graph aligned with x and y transformation : {'R', 'B', 'D', 'U', 'V'} weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. permutations : int number of random permutations for calculation of pseudo p_values Attributes ---------- zx : array original x variable standardized by mean and std zy : array original y variable standardized by mean and std w : W | Graph original w object permutation : int number of permutations I : float value of bivariate Moran's I sim : array (if permutations>0) vector of I values for permuted samples p_sim : float (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed I is extreme it is either extremely high or extremely low EI_sim : array (if permutations>0) average value of I from permutations VI_sim : array (if permutations>0) variance of I from permutations seI_sim : array (if permutations>0) standard deviation of I under permutations. z_sim : array (if permutations>0) standardized I based on permutations p_z_sim : float (if permutations>0) p-value based on standard normal approximation from permutations Notes ----- Inference is only based on permutations as analytical results are not too reliable. Examples -------- >>> import libpysal >>> import numpy as np Set random number generator seed so we can replicate the example >>> np.random.seed(10) Open the sudden infant death dbf file and read in rates for 74 and 79 converting each to a numpy array >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> SIDR74 = np.array(f.by_col['SIDR74']) >>> SIDR79 = np.array(f.by_col['SIDR79']) Read a GAL file and construct our spatial weights object >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() Create an instance of Moran_BV >>> from esda.moran import Moran_BV >>> mbi = Moran_BV(SIDR79, SIDR74, w) What is the bivariate Moran's I value >>> round(mbi.I, 3) 0.156 Based on 999 permutations, what is the p-value of our statistic >>> round(mbi.p_z_sim, 3) 0.001 """
[docs] def __init__(self, x, y, w, transformation="r", permutations=PERMUTATIONS): x = np.asarray(x).flatten() y = np.asarray(y).flatten() zy = (y - y.mean()) / y.std(ddof=1) zx = (x - x.mean()) / x.std(ddof=1) self.y = y self.x = x self.zx = zx self.zy = zy n = x.shape[0] self.den = n - 1.0 # zx'zx = zy'zy = n-1 w = _transform(w, transformation) self.w = w self.I = self.__calc(zy) # noqa: E741 if permutations: nrp = np.random.permutation sim = [self.__calc(nrp(zy)) for i in range(permutations)] self.sim = sim = np.array(sim) above = sim >= self.I larger = above.sum() if (permutations - larger) < larger: larger = permutations - larger self.p_sim = (larger + 1.0) / (permutations + 1.0) self.EI_sim = sim.sum() / permutations self.seI_sim = np.array(sim).std() self.VI_sim = self.seI_sim**2 self.z_sim = (self.I - self.EI_sim) / self.seI_sim if self.z_sim > 0: self.p_z_sim = stats.norm.sf(self.z_sim) else: self.p_z_sim = stats.norm.cdf(self.z_sim)
def __calc(self, zy): wzy = _slag(self.w, zy) self.num = (self.zx * wzy).sum() return self.num / self.den @property def _statistic(self): """More consistent hidden attribute to access ESDA statistics""" return self.I
[docs] @classmethod def by_col( cls, df, x, y=None, w=None, inplace=False, pvalue="sim", outvals=None, **stat_kws, ): """ Function to compute a Moran_BV statistic on a dataframe Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_BV statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_BV statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_BV statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ return _bivariate_handler( df, x, y=y, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, swapname=cls.__name__.lower(), stat=cls, **stat_kws, )
[docs] def Moran_BV_matrix(variables, w, permutations=0, varnames=None): # noqa: N802 """ Bivariate Moran Matrix Calculates bivariate Moran between all pairs of a set of variables. Parameters ---------- variables : array or pandas.DataFrame sequence of variables to be assessed w : W | Graph spatial weights instance as W or Graph aligned with variables permutations : int number of permutations varnames : list, optional if variables is an array Strings for variable names. Will add an attribute to `Moran_BV` objects in results needed for plotting in `splot` or `.plot()`. Default =None. Note: If variables is a `pandas.DataFrame` varnames will automatically be generated Returns ------- results : dictionary (i, j) is the key for the pair of variables, values are the Moran_BV objects. Examples -------- open dbf >>> import libpysal >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) pull of selected variables from dbf and create numpy arrays for each >>> varnames = ['SIDR74', 'SIDR79', 'NWR74', 'NWR79'] >>> vars = [np.array(f.by_col[var]) for var in varnames] create a contiguity matrix from an external gal file >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() create an instance of Moran_BV_matrix >>> from esda.moran import Moran_BV_matrix >>> res = Moran_BV_matrix(vars, w, varnames = varnames) check values >>> round(res[(0, 1)].I,7) 0.1936261 >>> round(res[(3, 0)].I,7) 0.3770138 """ try: # check if pandas is installed import pandas if isinstance(variables, pandas.DataFrame): # if yes use variables as df and convert to numpy_array varnames = pandas.Index.tolist(variables.columns) variables_n = [] for var in varnames: variables_n.append(variables[str(var)].values) else: variables_n = variables except ImportError: variables_n = variables results = _Moran_BV_Matrix_array( variables=variables_n, w=w, permutations=permutations, varnames=varnames ) return results
def _Moran_BV_Matrix_array(variables, w, permutations=0, varnames=None): # noqa: N802 """ Base calculation for MORAN_BV_Matrix """ k = len(variables) if varnames is None: varnames = [f"x{i}" for i in range(k)] rk = list(range(0, k - 1)) results = {} for i in rk: for j in range(i + 1, k): y1 = variables[i] y2 = variables[j] results[i, j] = Moran_BV(y1, y2, w, permutations=permutations) results[j, i] = Moran_BV(y2, y1, w, permutations=permutations) results[i, j].varnames = {"x": varnames[i], "y": varnames[j]} results[j, i].varnames = {"x": varnames[j], "y": varnames[i]} return results
[docs] class Moran_Rate(Moran): # noqa: N801 """ Adjusted Moran's I Global Autocorrelation Statistic for Rate Variables :cite:`Assuncao1999` Parameters ---------- e : array an event variable measured across n spatial units b : array a population-at-risk variable measured across n spatial units w : W | Graph spatial weights instance as W or Graph aligned with e and b adjusted : boolean whether or not Moran's I needs to be adjusted for rate variable transformation : {'R', 'B', 'D', 'U', 'V'} weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. two_tailed : boolean If True (default), analytical p-values for Moran's I are two-tailed, otherwise they are one tailed. permutations : int number of random permutations for calculation of pseudo p_values Attributes ---------- y : array rate variable computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates w : W | Graph original w object permutations : int number of permutations I : float value of Moran's I EI : float expected value under normality assumption VI_norm : float variance of I under normality assumption seI_norm : float standard deviation of I under normality assumption z_norm : float z-value of I under normality assumption p_norm : float p-value of I under normality assumption VI_rand : float variance of I under randomization assumption seI_rand : float standard deviation of I under randomization assumption z_rand : float z-value of I under randomization assumption p_rand : float p-value of I under randomization assumption two_tailed : boolean If True, p_norm and p_rand are two-tailed p-values, otherwise they are one-tailed. sim : array (if permutations>0) vector of I values for permuted samples p_sim : array (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed I is extreme if it is either extremely greater or extremely lower than the values obtained from permutaitons EI_sim : float (if permutations>0) average value of I from permutations VI_sim : float (if permutations>0) variance of I from permutations seI_sim : float (if permutations>0) standard deviation of I under permutations. z_sim : float (if permutations>0) standardized I based on permutations p_z_sim : float (if permutations>0) p-value based on standard normal approximation from Examples -------- >>> import libpysal >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> e = np.array(f.by_col('SID79')) >>> b = np.array(f.by_col('BIR79')) >>> from esda.moran import Moran_Rate >>> mi = Moran_Rate(e, b, w, two_tailed=False) >>> "%6.4f" % mi.I '0.1662' >>> "%6.4f" % mi.p_norm '0.0042' """
[docs] def __init__( self, e, b, w, adjusted=True, transformation="r", permutations=PERMUTATIONS, two_tailed=True, ): e = np.asarray(e).flatten() b = np.asarray(b).flatten() y = assuncao_rate(e, b) if adjusted else e * 1.0 / b Moran.__init__( self, y, w, transformation=transformation, permutations=permutations, two_tailed=two_tailed, )
[docs] @classmethod def by_col( cls, df, events, populations, w=None, inplace=False, pvalue="sim", outvals=None, swapname="", **stat_kws, ): """ Function to compute a Moran_Rate statistic on a dataframe Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_rate' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Rate statistic **stat_kws : keyword arguments options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ if not inplace: new = df.copy() cls.by_col( new, events, populations, w=w, inplace=True, pvalue=pvalue, outvals=outvals, swapname=swapname, **stat_kws, ) return new if isinstance(events, str): events = [events] if isinstance(populations, str): populations = [populations] if len(populations) < len(events): populations = populations * len(events) if len(events) != len(populations): raise ValueError( "There is not a one-to-one matching between events and populations!" f"\nEvents: {events}\nPopulations: {populations}" ) adjusted = stat_kws.pop("adjusted", True) if isinstance(adjusted, bool): adjusted = [adjusted] * len(events) if swapname == "": swapname = cls.__name__.lower() rates = [ assuncao_rate(df[e], df[pop]) if adj else df[e].astype(float) / df[pop] for e, pop, adj in zip(events, populations, adjusted, strict=True) ] names = ["-".join((e, p)) for e, p in zip(events, populations, strict=True)] out_df = df.copy() rate_df = out_df.from_dict( dict(zip(names, rates, strict=True)) ) # trick to avoid importing pandas stat_df = _univariate_handler( rate_df, names, w=w, inplace=False, pvalue=pvalue, outvals=outvals, swapname=swapname, stat=Moran, # how would this get done w/super? **stat_kws, ) for col in stat_df.columns: df[col] = stat_df[col]
# -----------------------------------------------------------------------------# # Local Statistics # # -----------------------------------------------------------------------------#
[docs] class Moran_Local: # noqa: N801 """Local Moran Statistics. Parameters ---------- y : array (n,1), attribute array w : W | Graph spatial weights instance as W or Graph aligned with y transformation : {'R', 'B', 'D', 'U', 'V'} weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. permutations : int number of random permutations for calculation of pseudo p_values geoda_quads : boolean (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4 n_jobs : int Number of cores to be used in the conditional randomisation. If -1, all available cores are used. keep_simulations : Boolean (default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved seed : None/int Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances. island_weight: value to use as a weight for the "fake" neighbor for every island. If numpy.nan, will propagate to the final local statistic depending on the `stat_func`. If 0, then the lag is always zero for islands. Attributes ---------- y : array original variable w : W | Graph original w object permutations : int number of random permutations for calculation of pseudo p_values Is : array local Moran's I values q : array (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL sim : array (permutations by n) (if permutations>0) I values for permuted samples p_sim : array (if permutations>0) p-values based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated values. It is either extremely high or extremely low in the distribution of simulated Is. EI_sim : array (if permutations>0) average values of local Is from permutations VI_sim : array (if permutations>0) variance of Is from permutations EI : array analytical expectation of Is under total permutation, from :cite:`Anselin1995`. Is the same at each site, and equal to the expectation of I itself when transformation='r'. We recommend using EI_sim, not EI, for analysis. This EI is only provided for reproducibility. VI : array analytical variance of Is under total permutation, from :cite:`Anselin1995`. Varies according only to cardinality. We recommend using VI_sim, not VI, for analysis. This VI is only provided for reproducibility. EIc : array analytical expectation of Is under conditional permutation, from :cite:`sokal1998local`. Varies strongly by site, since it conditions on z_i. We recommend using EI_sim, not EIc, for analysis. This EIc is only provided for reproducibility. VIc : array analytical variance of Is under conditional permutation, from :cite:`sokal1998local`. Varies strongly by site, since it conditions on z_i. We recommend using VI_sim, not VIc, for analysis. This VIc is only provided for reproducibility. seI_sim : array (if permutations>0) standard deviations of Is under permutations. z_sim : arrray (if permutations>0) standardized Is based on permutations p_z_sim : array (if permutations>0) p-values based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2 n_jobs : int Number of cores to be used in the conditional randomisation. If -1, all available cores are used. keep_simulations : Boolean (default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved seed : None/int Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances. Notes ----- For technical details see :cite:`Anselin95`. Examples -------- >>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("desmith.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("desmith.txt")) >>> y = np.array(f.by_col['z']) >>> from esda.moran import Moran_Local >>> lm = Moran_Local(y, w, transformation = "r", permutations = 99) >>> lm.q array([4, 4, 4, 2, 3, 3, 1, 4, 3, 3]) >>> lm.p_z_sim[0] 0.24669152541631179 >>> lm = Moran_Local(y, w, transformation = "r", permutations = 99, \ geoda_quads=True) >>> lm.q array([4, 4, 4, 3, 2, 2, 1, 4, 2, 2]) Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures. """
[docs] def __init__( self, y, w, transformation="r", permutations=PERMUTATIONS, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0, # noqa: ARG002 ): y = np.asarray(y).flatten() self.y = y n = len(y) self.n = n self.n_1 = n - 1 z = y - y.mean() # setting for floating point noise orig_settings = np.seterr() np.seterr(all="ignore") sy = y.std() z /= sy np.seterr(**orig_settings) self.z = z w = _transform(w, transformation) self.w = w self.permutations = permutations self.den = (z * z).sum() self.Is = self.__calc(self.w, self.z) self.geoda_quads = geoda_quads quads = [1, 2, 3, 4] if geoda_quads: quads = [1, 3, 2, 4] self.quads = quads self.__quads() self.__moments() if permutations: self.p_sim, self.rlisas = _crand_plus( z, w, self.Is, permutations, keep_simulations, n_jobs=n_jobs, stat_func=_moran_local_crand, seed=seed, ) self.sim = np.transpose(self.rlisas) if keep_simulations: sim = np.transpose(self.rlisas) above = sim >= self.Is larger = above.sum(0) low_extreme = (self.permutations - larger) < larger larger[low_extreme] = self.permutations - larger[low_extreme] self.p_sim = (larger + 1.0) / (permutations + 1.0) self.sim = sim self.EI_sim = self.sim.mean(axis=0) self.seI_sim = self.sim.std(axis=0) self.VI_sim = self.seI_sim * self.seI_sim self.z_sim = (self.Is - self.EI_sim) / self.seI_sim self.p_z_sim = stats.norm.sf(np.abs(self.z_sim)) else: self.sim = self.rlisas = None self.EI_sim = np.nan self.seI_sim = np.nan self.VI_sim = np.nan self.z_sim = np.nan self.p_z_sim = np.nan
def __calc(self, w, z): zl = _slag(w, z) return self.n_1 * self.z * zl / self.den def __quads(self): zl = _slag(self.w, self.z) zp = self.z > 0 lp = zl > 0 pp = zp * lp np = (1 - zp) * lp nn = (1 - zp) * (1 - lp) pn = zp * (1 - lp) q0, q1, q2, q3 = self.quads self.q = (q0 * pp) + (q1 * np) + (q2 * nn) + (q3 * pn) def __moments(self): W = self.w.sparse z = self.z simplefilter("always", sparse.SparseEfficiencyWarning) n = self.n m2 = (z * z).sum() / n wi = np.asarray(W.sum(axis=1)).flatten() wi2 = np.asarray(W.multiply(W).sum(axis=1)).flatten() # --------------------------------------------------------- # Conditional randomization null, Sokal 1998, Eqs. A7 & A8 # assume that division is as written, so that # a - b / (n - 1) means a - (b / (n-1)) # --------------------------------------------------------- expectation = -(z**2 * wi) / ((n - 1) * m2) var_term1 = (z / m2) ** 2 var_term2 = n / (n - 2) var_term3 = wi2 - (wi**2 / (n - 1)) var_term4 = m2 - (z**2 / (n - 1)) variance = var_term1 * var_term2 * var_term3 * var_term4 self.EIc = expectation self.VIc = variance # --------------------------------------------------------- # Total randomization null, Sokal 1998, Eqs. A3 & A4* # --------------------------------------------------------- m4 = z**4 / n b2 = m4 / m2**2 expectation = -wi / (n - 1) # assume that "avoiding identical subscripts" in :cite:`Anselin1995` # includes i==h and i==k, we can use the form due to # :cite:`sokal1998local` below. # wikh = _wikh_fast(W) # variance_anselin = (wi2 * (n - b2)/(n-1) # + 2*wikh*(2*b2 - n) / ((n-1)*(n-2)) # - wi**2/(n-1)**2) self.EI = expectation n1 = n - 1 self.VI = wi2 * (n - b2) / n1 self.VI += (wi**2 - wi2) * (2 * b2 - n) / (n1 * (n - 2)) self.VI -= (-wi / n1) ** 2 @property def _statistic(self): """More consistent hidden attribute to access ESDA statistics.""" return self.Is
[docs] @classmethod def by_col( cls, df, cols, w=None, inplace=False, pvalue="sim", outvals=None, **stat_kws ): """ Function to compute a Moran_Local statistic on a dataframe. Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column cols : string or list of string name or list of names of columns to use to compute the statistic w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Local statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Local statistic **stat_kws : dict options to pass to the underlying statistic. For this, see the documentation for the Moran_Local statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ return _univariate_handler( df, cols, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, stat=cls, swapname=cls.__name__.lower(), **stat_kws, )
[docs] def get_cluster_labels(self, crit_value=0.05): """Return LISA cluster labels for each observation. Parameters ---------- crit_value : float, optional crititical significance value for statistical inference, by default 0.05 Returns ------- numpy.array an array of cluster labels aligned with the input data used to conduct the local Moran analysis """ return _get_cluster_labels(self, crit_value)
[docs] def explore(self, gdf, crit_value=0.05, **kwargs): """Create interactive map of LISA indicators Parameters ---------- gdf : geopandas.GeoDataFrame geodataframe used to conduct the local Moran analysis crit_value : float, optional critical value to determine statistical significance, by default 0.05 kwargs : dict, optional additional keyword arguments passed to the geopandas `explore` method Returns ------- Folium.Map interactive map with LISA clusters """ gdf = gdf.copy() gdf["Moran Cluster"] = self.get_cluster_labels(crit_value) return _explore_local_moran(self, gdf, crit_value, **kwargs)
[docs] class Moran_Local_BV: # noqa: N801 """Bivariate Local Moran Statistics. Parameters ---------- x : array x-axis variable y : array (n,1), wy will be on y axis w : W | Graph spatial weights instance as W or Graph aligned with y transformation : {'R', 'B', 'D', 'U', 'V'} weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. permutations : int number of random permutations for calculation of pseudo p_values geoda_quads : boolean (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4 njobs : int number of workers to use to compute the local statistic. keep_simulations : Boolean (default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved seed : None/int Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances. island_weight: value to use as a weight for the "fake" neighbor for every island. If numpy.nan, will propagate to the final local statistic depending on the `stat_func`. If 0, then the lag is always zero for islands. Attributes ---------- zx : array original x variable standardized by mean and std zy : array original y variable standardized by mean and std w : W | Graph original w object permutations : int number of random permutations for calculation of pseudo p_values Is : float value of Moran's I q : array (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL sim : array (if permutations>0) vector of I values for permuted samples p_sim : array (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated values. It is either extremelyi high or extremely low in the distribution of simulated Is. EI_sim : array (if permutations>0) average values of local Is from permutations VI_sim : array (if permutations>0) variance of Is from permutations seI_sim: array (if permutations>0) standard deviations of Is under permutations. z_sim : arrray (if permutations>0) standardized Is based on permutations p_z_sim: array (if permutations>0) p-values based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2 Examples -------- >>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> x = np.array(f.by_col['SIDR79']) >>> y = np.array(f.by_col['SIDR74']) >>> from esda.moran import Moran_Local_BV >>> lm =Moran_Local_BV(x, y, w, transformation = "r", \ permutations = 99) >>> lm.q[:10] array([3, 4, 3, 4, 2, 1, 4, 4, 2, 4]) >>> lm = Moran_Local_BV(x, y, w, transformation = "r", \ permutations = 99, geoda_quads=True) >>> lm.q[:10] array([2, 4, 2, 4, 3, 1, 4, 4, 3, 4]) Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures. """
[docs] def __init__( self, x, y, w, transformation="r", permutations=PERMUTATIONS, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0, # noqa: ARG002 ): x = np.asarray(x).flatten() y = np.asarray(y).flatten() self.y = y self.x = x n = len(y) assert len(y) == len(x), "x and y must have the same shape!" self.n = n self.n_1 = n - 1 zx = x - x.mean() zy = y - y.mean() # setting for floating point noise orig_settings = np.seterr() np.seterr(all="ignore") sx = x.std() zx /= sx sy = y.std() zy /= sy np.seterr(**orig_settings) self.zx = zx self.zy = zy w = _transform(w, transformation) self.w = w self.permutations = permutations self.den = (zx * zx).sum() self.Is = self.__calc() self.geoda_quads = geoda_quads quads = [1, 2, 3, 4] if geoda_quads: quads = [1, 3, 2, 4] self.quads = quads self.__quads() if permutations: self.p_sim, self.rlisas = _crand_plus( np.column_stack((zx, zy)), w, self.Is, permutations, keep_simulations, n_jobs=n_jobs, stat_func=_moran_local_bv_crand, seed=seed, ) self.sim = np.transpose(self.rlisas) if keep_simulations: sim = np.transpose(self.rlisas) above = sim >= self.Is larger = above.sum(0) low_extreme = (self.permutations - larger) < larger larger[low_extreme] = self.permutations - larger[low_extreme] self.p_sim = (larger + 1.0) / (permutations + 1.0) self.sim = sim self.EI_sim = sim.mean(axis=0) self.seI_sim = sim.std(axis=0) self.VI_sim = self.seI_sim * self.seI_sim self.z_sim = (self.Is - self.EI_sim) / self.seI_sim self.p_z_sim = stats.norm.sf(np.abs(self.z_sim))
def __calc(self): zly = _slag(self.w, self.zy) return self.n_1 * self.zx * zly / self.den def __quads(self): zl = _slag(self.w, self.zy) zp = self.zx > 0 lp = zl > 0 pp = zp * lp np = (1 - zp) * lp nn = (1 - zp) * (1 - lp) pn = zp * (1 - lp) q0, q1, q2, q3 = self.quads self.q = (q0 * pp) + (q1 * np) + (q2 * nn) + (q3 * pn) @property def _statistic(self): """More consistent hidden attribute to access ESDA statistics.""" return self.Is
[docs] @classmethod def by_col( cls, df, x, y=None, w=None, inplace=False, pvalue="sim", outvals=None, **stat_kws, ): """ Function to compute a Moran_Local_BV statistic on a dataframe Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column X : list of strings column name or list of column names to use as X values to compute the bivariate statistic. If no Y is provided, pairwise comparisons among these variates are used instead. Y : list of strings column name or list of column names to use as Y values to compute the bivariate statistic. if no Y is provided, pariwise comparisons among the X variates are used instead. w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local_bv' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Local_BV statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Local_BV statistic **stat_kws : dict options to pass to the underlying statistic. For this, see the documentation for the Moran_Local_BV statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ return _bivariate_handler( df, x, y=y, w=w, inplace=inplace, pvalue=pvalue, outvals=outvals, swapname=cls.__name__.lower(), stat=cls, **stat_kws, )
[docs] class Moran_Local_Rate(Moran_Local): # noqa: N801 """ Adjusted Local Moran Statistics for Rate Variables :cite:`Assuncao1999`. Parameters ---------- e : array (n,1), an event variable across n spatial units b : array (n,1), a population-at-risk variable across n spatial units w : W | Graph spatial weights instance as W or Graph aligned with y adjusted : boolean whether or not local Moran statistics need to be adjusted for rate variable transformation : {'R', 'B', 'D', 'U', 'V'} weights transformation, default is row-standardized "r". Other options include "B": binary, "D": doubly-standardized, "U": untransformed (general weights), "V": variance-stabilizing. permutations : int number of random permutations for calculation of pseudo p_values geoda_quads : boolean (default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4 njobs : int number of workers to use to compute the local statistic. keep_simulations : Boolean (default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved seed : None/int Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances. island_weight : float value to use as a weight for the "fake" neighbor for every island. If numpy.nan, will propagate to the final local statistic depending on the `stat_func`. If 0, then the lag is always zero for islands. Attributes ---------- y : array rate variables computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates w : W | Graph original w object permutations : int number of random permutations for calculation of pseudo p_values Is : float value of Local Moran's Ii q : array (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL sim : array (if permutations>0) vector of I values for permuted samples p_sim : array (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated Iis. It is either extremely high or extremely low in the distribution of simulated Is EI_sim : float (if permutations>0) average value of I from permutations VI_sim : float (if permutations>0) variance of I from permutations seI_sim : float (if permutations>0) standard deviation of I under permutations. z_sim : float (if permutations>0) standardized I based on permutations p_z_sim : float (if permutations>0) p-value based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2 Examples -------- >>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> e = np.array(f.by_col('SID79')) >>> b = np.array(f.by_col('BIR79')) >>> from esda.moran import Moran_Local_Rate >>> lm = Moran_Local_Rate(e, b, w, transformation="r", permutations=99) >>> lm.q[:10] array([2, 4, 3, 1, 2, 1, 1, 4, 2, 4]) >>> lm = Moran_Local_Rate( ... e, b, w, transformation = "r", permutations=99, geoda_quads=True ) >>> lm.q[:10] array([3, 4, 2, 1, 3, 1, 1, 4, 3, 4]) Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures """
[docs] def __init__( self, e, b, w, adjusted=True, transformation="r", permutations=PERMUTATIONS, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0, # noqa: ARG002 ): e = np.asarray(e).flatten() b = np.asarray(b).flatten() y = assuncao_rate(e, b) if adjusted else e * 1.0 / b Moran_Local.__init__( self, y, w, transformation=transformation, permutations=permutations, geoda_quads=geoda_quads, n_jobs=n_jobs, keep_simulations=keep_simulations, seed=seed, )
[docs] @classmethod def by_col( cls, df, events, populations, w=None, inplace=False, pvalue="sim", outvals=None, swapname="", **stat_kws, ): """ Function to compute a Moran_Local_Rate statistic on a dataframe Parameters ---------- df : pandas.DataFrame a pandas dataframe with a geometry column events : string or list of strings one or more names where events are stored populations : string or list of strings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised. w : W | Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe's metadata inplace : bool a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named 'column_moran_local_rate' pvalue : string a string denoting which pvalue should be returned. Refer to the the Moran_Local_Rate statistic's documentation for available p-values outvals : list of strings list of arbitrary attributes to return as columns from the Moran_Local_Rate statistic **stat_kws : dict options to pass to the underlying statistic. For this, see the documentation for the Moran_Local_Rate statistic. Returns -------- If inplace, None, and operation is conducted on dataframe in memory. Otherwise, returns a copy of the dataframe with the relevant columns attached. """ if not inplace: new = df.copy() cls.by_col( new, events, populations, w=w, inplace=True, pvalue=pvalue, outvals=outvals, swapname=swapname, **stat_kws, ) return new if isinstance(events, str): events = [events] if isinstance(populations, str): populations = [populations] if len(populations) < len(events): populations = populations * len(events) if len(events) != len(populations): raise ValueError( "There is not a one-to-one matching between events and populations!" f"\nEvents: {events}\nPopulations: {populations}" ) adjusted = stat_kws.pop("adjusted", True) if isinstance(adjusted, bool): adjusted = [adjusted] * len(events) if swapname == "": swapname = cls.__name__.lower() rates = [ assuncao_rate(df[e], df[pop]) if adj else df[e].astype(float) / df[pop] for e, pop, adj in zip(events, populations, adjusted, strict=True) ] names = ["-".join((e, p)) for e, p in zip(events, populations, strict=True)] out_df = df.copy() rate_df = out_df.from_dict( dict(zip(names, rates, strict=True)) ) # trick to avoid importing pandas _univariate_handler( rate_df, names, w=w, inplace=True, pvalue=pvalue, outvals=outvals, swapname=swapname, stat=Moran_Local, # how would this get done w/super? **stat_kws, ) for col in rate_df.columns: df[col] = rate_df[col]
def _explore_local_moran(moran_local, gdf, crit_value, **kwargs): """Plot local Moran values as an interactive map Parameters ---------- moran_local : esda.Moran_Local a fitted local Moran class from the PySAL esda module gdf : geopandas.GeoDataFrame geodataframe used to create the Moran_Local class crit_value : float, optional critical value for determining statistical significance, by default 0.05 kwargs : dict, optional additional keyword arguments are passed directly to geopandas.explore, by default None Returns ------- m folium.Map """ gdf = gdf.copy() gdf["Moran Cluster"] = moran_local.get_cluster_labels(crit_value) gdf["p-value"] = moran_local.p_sim x = gdf["Moran Cluster"].values y = np.unique(x) colors5_mpl = { "High-High": "#d7191c", "Low-High": "#89cff0", "Low-Low": "#2c7bb6", "High-Low": "#fdae61", "Insignificant": "lightgrey", } colors5 = [colors5_mpl[i] for i in y] # for mpl hmap = colors.ListedColormap(colors5) if "cmap" not in kwargs: kwargs["cmap"] = hmap m = gdf[["Moran Cluster", "p-value", "geometry"]].explore("Moran Cluster", **kwargs) return m def _get_cluster_labels(moran_local, crit_value): gdf = pd.DataFrame() gdf["q"] = moran_local.q gdf["p_sim"] = moran_local.p_sim gdf["Moran Cluster"] = "Insignificant" gdf.loc[(gdf["p_sim"] < crit_value) & (gdf["q"] == 1), "Moran Cluster"] = ( "High-High" ) gdf.loc[(gdf["p_sim"] < crit_value) & (gdf["q"] == 2), "Moran Cluster"] = "Low-High" gdf.loc[(gdf["p_sim"] < crit_value) & (gdf["q"] == 3), "Moran Cluster"] = "Low-Low" gdf.loc[(gdf["p_sim"] < crit_value) & (gdf["q"] == 4), "Moran Cluster"] = "High-Low" return gdf["Moran Cluster"].values # -------------------------------------------------------------- # Conditional Randomization Moment Estimators # -------------------------------------------------------------- def _wikh_fast(W, sokal_correction=False): """ This computes the outer product of weights for each observation. .. math:: w_{i(kh)} = \\sum_{k \neq i}^n \\sum_{h \neq i}^n w_ik * w_hk If the :cite:`sokal1998local` version is used, then we also have h \neq k Since this version introduces a simplification in the expression where this function is called, the defaults should always return the version in the original :cite:`Anselin1995 paper`. Arguments --------- W : scipy sparse matrix a sparse matrix describing the spatial relationships between observations. sokal_correction : bool Whether to avoid self-neighbors in the summation of weights. If False (default), then the outer product of all weights for observation i are used, regardless if they are of the form w_hh or w_kk. Returns ------- (n,) length numpy.ndarray containing the result. """ return _wikh_numba( W.shape[0], *W.nonzero(), W.data, sokal_correction=sokal_correction ) @_njit(fastmath=True) def _wikh_numba(n, row, col, data, sokal_correction=False): """ This is a fast implementation of the wi(kh) function from :cite:`Anselin1995`. This uses numpy to compute the outer product of each observation's weights, after removing the w_ii entry. Then, the sum of the outer product is taken. If the sokal correction is requested, the trace of the outer product matrix is removed from the result. """ result = np.empty((n,), dtype=data.dtype) ixs = np.arange(n) for i in ixs: # all weights that are not the self weight row_no_i = data[(row == i) & (col != i)] # compute the pairwise product pairwise_product = np.outer(row_no_i, row_no_i) # get the sum overall (wik*wih) result[i] = pairwise_product.sum() if sokal_correction: # minus the diagonal (wik*wih when k==h) result[i] -= np.trace(pairwise_product) return result / 2 def _wikh_slow(W, sokal_correction=False): """ This is a slow implementation of the wi(kh) function from :cite:`Anselin1995` This does three nested for-loops over n, doing the literal operations stated by the expression. """ W = W.toarray() (n, n) = W.shape result = np.empty((n,)) # for each observation for i in range(n): acc = 0 # we need the product wik for k in range(n): # excluding wii * wih if i == k: continue # and wij for h in range(n): # excluding wik * wii if i == h: continue if sokal_correction and h == k: # excluding wih * wih continue acc += W[i, k] * W[i, h] result[i] = acc return result / 2 # -------------------------------------------------------------- # Conditional Randomization Function Implementations # -------------------------------------------------------------- @_njit(fastmath=True) def _moran_local_bv_crand(i, z, permuted_ids, weights_i, scaling): self_weight = weights_i[0] other_weights = weights_i[1:] zx = z[:, 0] zy = z[:, 1] zyi, zyrand = _prepare_univariate(i, zy, permuted_ids, other_weights) return zx[i] * (zyrand @ other_weights + self_weight * zyi) * scaling @_njit(fastmath=True) def _moran_local_crand(i, z, permuted_ids, weights_i, scaling): self_weight = weights_i[0] other_weights = weights_i[1:] zi, zrand = _prepare_univariate(i, z, permuted_ids, other_weights) return zi * (zrand @ other_weights + self_weight * zi) * scaling