esda.Moran_Rate¶
- class esda.Moran_Rate(e, b, w, adjusted=True, transformation='r', permutations=999, two_tailed=True)[source]¶
Adjusted Moran’s I Global Autocorrelation Statistic for Rate Variables [AR99]
- Parameters:
- e
array
an event variable measured across n spatial units
- b
array
a population-at-risk variable measured across n spatial units
- w
W
|Graph
spatial weights instance as W or Graph aligned with e and b
- adjustedbool
whether or not Moran’s I needs to be adjusted for rate variable
- transformation{‘R’, ‘B’, ‘D’, ‘U’, ‘V’}
weights transformation, default is row-standardized “r”. Other options include “B”: binary, “D”: doubly-standardized, “U”: untransformed (general weights), “V”: variance-stabilizing.
- two_tailedbool
If True (default), analytical p-values for Moran’s I are two-tailed, otherwise they are one tailed.
- permutations
int
number of random permutations for calculation of pseudo p_values
- e
Examples
>>> import libpysal >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> e = np.array(f.by_col('SID79')) >>> b = np.array(f.by_col('BIR79')) >>> from esda.moran import Moran_Rate >>> mi = Moran_Rate(e, b, w, two_tailed=False) >>> "%6.4f" % mi.I '0.1662' >>> "%6.4f" % mi.p_norm '0.0042'
- Attributes:
- y
array
rate variable computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates
- w
W
|Graph
original w object
- permutations
int
number of permutations
- I
float
value of Moran’s I
- EI
float
expected value under normality assumption
- VI_norm
float
variance of I under normality assumption
- seI_norm
float
standard deviation of I under normality assumption
- z_norm
float
z-value of I under normality assumption
- p_norm
float
p-value of I under normality assumption
- VI_rand
float
variance of I under randomization assumption
- seI_rand
float
standard deviation of I under randomization assumption
- z_rand
float
z-value of I under randomization assumption
- p_rand
float
p-value of I under randomization assumption
- two_tailedbool
If True, p_norm and p_rand are two-tailed p-values, otherwise they are one-tailed.
- sim
array
(if permutations>0) vector of I values for permuted samples
- p_sim
array
(if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed I is extreme if it is either extremely greater or extremely lower than the values obtained from permutaitons
- EI_sim
float
(if permutations>0) average value of I from permutations
- VI_sim
float
(if permutations>0) variance of I from permutations
- seI_sim
float
(if permutations>0) standard deviation of I under permutations.
- z_sim
float
(if permutations>0) standardized I based on permutations
- p_z_sim
float
(if permutations>0) p-value based on standard normal approximation from
- y
Methods
__init__
(e, b, w[, adjusted, ...])by_col
(df, events, populations[, w, ...])Function to compute a Moran_Rate statistic on a dataframe
- classmethod by_col(df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)[source]¶
Function to compute a Moran_Rate statistic on a dataframe
- Parameters:
- df
pandas.DataFrame
a pandas dataframe with a geometry column
- events
str
orlist
ofstrings
one or more names where events are stored
- populations
str
orlist
ofstrings
one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised.
- w
W
|Graph
spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe’s metadata
- inplacebool
a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named ‘column_moran_rate’
- pvalue
str
a string denoting which pvalue should be returned. Refer to the the Moran_Rate statistic’s documentation for available p-values
- outvals
list
ofstrings
list of arbitrary attributes to return as columns from the Moran_Rate statistic
- **stat_kws
keyword
arguments
options to pass to the underlying statistic. For this, see the documentation for the Moran_Rate statistic.
- df
- Returns: