esda.Moran_Local_Rate¶
- class esda.Moran_Local_Rate(e, b, w, adjusted=True, transformation='r', permutations=999, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0)[source]¶
Adjusted Local Moran Statistics for Rate Variables [AR99].
- Parameters:
- e
array (n,1), an event variable across n spatial units
- b
array (n,1), a population-at-risk variable across n spatial units
- w
W|Graph spatial weights instance as W or Graph aligned with y
- adjustedbool
whether or not local Moran statistics need to be adjusted for rate variable
- transformation{‘R’, ‘B’, ‘D’, ‘U’, ‘V’}
weights transformation, default is row-standardized “r”. Other options include “B”: binary, “D”: doubly-standardized, “O”: restore original transformation (applicable only if
wis passed asW), “V”: variance-stabilizing.- permutations
int number of random permutations for calculation of pseudo p_values
- geoda_quadsbool
(default=False) If True use GeoDa scheme: HH=1, LL=2, LH=3, HL=4 If False use PySAL Scheme: HH=1, LH=2, LL=3, HL=4
- njobs
int number of workers to use to compute the local statistic.
- keep_simulations
Boolean (default=True) If True, the entire matrix of replications under the null is stored in memory and accessible; otherwise, replications are not saved
- seedNone/int
Seed to ensure reproducibility of conditional randomizations. Must be set here, and not outside of the function, since numba does not correctly interpret external seeds nor numpy.random.RandomState instances.
- island_weight
float value to use as a weight for the “fake” neighbor for every island. If numpy.nan, will propagate to the final local statistic depending on the stat_func. If 0, then the lag is always zero for islands.
- e
- Attributes:
- y
array rate variables computed from parameters e and b if adjusted is True, y is standardized rates otherwise, y is raw rates
- z
array zero-mean, unit standard deviation normalized y
- w
W|Graph original w object
- permutations
int number of random permutations for calculation of pseudo p_values
- Is
float value of Local Moran’s Ii
- q
array (if permutations>0) values indicate quandrant location 1 HH, 2 LH, 3 LL, 4 HL
- sim
array (if permutations>0) vector of I values for permuted samples
- p_sim
array (if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Ii is further away or extreme from the median of simulated Iis. It is either extremely high or extremely low in the distribution of simulated Is
- EI_sim
float (if permutations>0) average value of I from permutations
- VI_sim
float (if permutations>0) variance of I from permutations
- seI_sim
float (if permutations>0) standard deviation of I under permutations.
- z_sim
float (if permutations>0) standardized I based on permutations
- p_z_sim
float (if permutations>0) p-value based on standard normal approximation from permutations (one-sided) for two-sided tests, these values should be multiplied by 2
- y
Examples
>>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("sids2.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("sids2.dbf")) >>> e = np.array(f.by_col('SID79')) >>> b = np.array(f.by_col('BIR79')) >>> from esda.moran import Moran_Local_Rate >>> lm = Moran_Local_Rate(e, b, w, transformation="r", permutations=99) >>> lm.q[:10] array([2, 4, 3, 1, 2, 1, 1, 4, 2, 4]) >>> lm = Moran_Local_Rate( ... e, b, w, transformation = "r", permutations=99, geoda_quads=True ) >>> lm.q[:10] array([3, 4, 2, 1, 3, 1, 1, 4, 3, 4])
Note random components result is slightly different values across architectures so the results have been removed from doctests and will be moved into unittests that are conditional on architectures
- __init__(e, b, w, adjusted=True, transformation='r', permutations=999, geoda_quads=False, n_jobs=1, keep_simulations=True, seed=None, island_weight=0)[source]¶
Methods
__init__(e, b, w[, adjusted, ...])by_col(df, events, populations[, w, ...])Function to compute a Moran_Local_Rate statistic on a dataframe
explore(gdf[, crit_value])Create interactive map of LISA indicators
get_cluster_labels([crit_value])Return LISA cluster labels for each observation.
plot(gdf[, crit_value])Create static map of LISA indicators
plot_combination(gdf, attribute[, ...])Produce three-plot visualisation of Moran Scatteprlot, LISA cluster and Choropleth maps, with Local Moran region and quadrant masking
plot_scatter([crit_value, ax, scatter_kwds, ...])Plot a Moran scatterplot with optional coloring for significant points.
- classmethod by_col(df, events, populations, w=None, inplace=False, pvalue='sim', outvals=None, swapname='', **stat_kws)[source]¶
Function to compute a Moran_Local_Rate statistic on a dataframe
- Parameters:
- df
pandas.DataFrame a pandas dataframe with a geometry column
- events
strorlistofstrings one or more names where events are stored
- populations
strorlistofstrings one or more names where the populations corresponding to the events are stored. If one population column is provided, it is used for all event columns. If more than one population column is provided but there is not a population for every event column, an exception will be raised.
- w
W|Graph spatial weights instance as W or Graph aligned with the dataframe. If not provided, this is searched for in the dataframe’s metadata
- inplacebool
a boolean denoting whether to operate on the dataframe inplace or to return a series contaning the results of the computation. If operating inplace, the derived columns will be named ‘column_moran_local_rate’
- pvalue
str a string denoting which pvalue should be returned. Refer to the the Moran_Local_Rate statistic’s documentation for available p-values
- outvals
listofstrings list of arbitrary attributes to return as columns from the Moran_Local_Rate statistic
- **stat_kws
dict options to pass to the underlying statistic. For this, see the documentation for the Moran_Local_Rate statistic.
- df
- Returns: