giddy.rank.Tau_Regional¶
- class giddy.rank.Tau_Regional(x, y, regime, permutations=0)[source]¶
Inter and intraregional decomposition of the classic Tau.
- Parameters:
- xarray
(n, ), first variable.
- yarray
(n, ), second variable.
- regimesarray
(n, ), ids of which regime an observation belongs to.
- permutationsint
number of random spatial permutations for computationally based inference.
Notes
The equation for calculating inter and intraregional Tau statistic can be found in [Rey16] Equation (27).
Examples
>>> import libpysal as ps >>> import numpy as np >>> from giddy.rank import Tau_Regional >>> np.random.seed(10) >>> f = ps.io.open(ps.examples.get_path("mexico.csv")) >>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)] >>> y = np.transpose(np.array([f.by_col[v] for v in vnames])) >>> r = y / y.mean(axis=0) >>> regime = np.array(f.by_col['esquivel99']) >>> res = Tau_Regional(y[:,0],y[:,-1],regime,permutations=999) >>> res.tau_reg array([[1. , 0.25 , 0.5 , 0.6 , 0.83333333, 0.6 , 1. ], [0.25 , 0.33333333, 0.5 , 0.3 , 0.91666667, 0.4 , 0.75 ], [0.5 , 0.5 , 0.6 , 0.4 , 0.38888889, 0.53333333, 0.83333333], [0.6 , 0.3 , 0.4 , 0.2 , 0.4 , 0.28 , 0.8 ], [0.83333333, 0.91666667, 0.38888889, 0.4 , 0.6 , 0.73333333, 1. ], [0.6 , 0.4 , 0.53333333, 0.28 , 0.73333333, 0.8 , 0.8 ], [1. , 0.75 , 0.83333333, 0.8 , 1. , 0.8 , 0.33333333]]) >>> res.tau_reg_pvalues array([[0.782, 0.227, 0.464, 0.638, 0.294, 0.627, 0.201], [0.227, 0.352, 0.391, 0.14 , 0.048, 0.252, 0.327], [0.464, 0.391, 0.587, 0.198, 0.107, 0.423, 0.124], [0.638, 0.14 , 0.198, 0.141, 0.184, 0.089, 0.217], [0.294, 0.048, 0.107, 0.184, 0.583, 0.25 , 0.005], [0.627, 0.252, 0.423, 0.089, 0.25 , 0.38 , 0.227], [0.201, 0.327, 0.124, 0.217, 0.005, 0.227, 0.322]])
- Attributes:
- nint
number of observations.
- Sarray
(n ,n), concordance matrix, s_{i,j}=1 if observation i and j are concordant, s_{i, j}=-1 if observation i and j are discordant, and s_{i,j}=0 otherwise.
- tau_regarray
(k, k), observed concordance matrix with diagonal elements measuring concordance between units within a regime and the off-diagonal elements denoting concordance between observations from a specific pair of different regimes.
- tau_reg_simarray
(permutations, k, k), concordance matrices for permuted samples (if permutations>0).
- tau_reg_pvaluesarray
(k, k), one-sided pseudo p-values for observed concordance matrix under the null that income mobility were random in its spatial distribution.
Methods
__init__
(x, y, regime[, permutations])