References

[BB03]

Frank Bickenbach and Eckhardt Bode. Evaluating the Markov property in studies of economic convergence. International Regional Science Review, 26(3):363–392, 2003. URL: https://doi.org/10.1177/0160017603253789, doi:10.1177/0160017603253789.

[Bie11]

Torsten Biemann. A transition-oriented approach to optimal matching. Sociological Methodology, 41(1):195–221, 2011. URL: https://doi.org/10.1111/j.1467-9531.2011.01235.x, doi:10.1111/j.1467-9531.2011.01235.x.

[Chr05]

David Christensen. Fast algorithms for the calculation of kendall's τ. Computational Statistics, 20(1):51–62, Mar 2005. URL: https://doi.org/10.1007/BF02736122", doi:10.1007/BF02736122.

[FSZ04]

John P. Formby, W. James Smith, and Buhong Zheng. Mobility measurement, transition matrices and statistical inference. Journal of Econometrics, 120(1):181–205, 2004. URL: http://www.sciencedirect.com/science/article/pii/S0304407603002112, doi:https://doi.org/10.1016/S0304-4076(03)00211-2.

[Ibe09]

Oliver Ibe. Markov processes for stochastic modeling. Elsevier Academic Press, Amsterdam, 2009.

[KR18]

Wei Kang and Sergio J. Rey. Conditional and joint tests for spatial effects in discrete markov chain models of regional income distribution dynamics. The Annals of Regional Science, 61(1):73–93, Jul 2018. URL: https://doi.org/10.1007/s00168-017-0859-9, doi:10.1007/s00168-017-0859-9.

[KS67]

John G. Kemeny and James Laurie Snell. Finite markov chains. Van Nostrand, 1967.

[KKK62]

S. Kullback, M. Kupperman, and H. H. Ku. Tests for contingency tables and Markov chains. Technometrics, 4(4):573–608, 1962. URL: http://www.jstor.org/stable/1266291, doi:10.2307/1266291.

[PTVF07]

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes: the art of scientific computing. Cambridge Univ Pr, Cambridge, 3rd edition, 2007.

[Rey01]

Sergio J. Rey. Spatial empirics for economic growth and convergence. Geographical Analysis, 33(3):195–214, 2001. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.2001.tb00444.x, doi:10.1111/j.1538-4632.2001.tb00444.x.

[Rey04]

Sergio J. Rey. Spatial dependence in the evolution of regional income distributions. In A. Getis, J. Múr, and H. Zoeller, editors, Spatial econometrics and spatial statistics, pages 193–213. Palgrave, Hampshire, 2004.

[Rey14a]

Sergio J. Rey. Fast algorithms for a space-time concordance measure. Computational Statistics, 29(3-4):799–811, 2014. URL: https://doi.org/10.1007/s00180-013-0461-2, doi:10.1007/s00180-013-0461-2.

[Rey14b]

Sergio J. Rey. Rank-based Markov chains for regional income distribution dynamics. Journal of Geographical Systems, 16(2):115–137, 2014.

[Rey16]

Sergio J. Rey. Space–time patterns of rank concordance: local indicators of mobility association with application to spatial income inequality dynamics. Annals of the American Association of Geographers, 106(4):788–803, 2016. URL: https://doi.org/10.1080/24694452.2016.1151336, doi:10.1080/24694452.2016.1151336.

[RKW16]

Sergio J. Rey, Wei Kang, and Levi Wolf. The properties of tests for spatial effects in discrete Markov chain models of regional income distribution dynamics. Journal of Geographical Systems, 18(4):377–398, 2016. URL: http://dx.doi.org/10.1007/s10109-016-0234-x, doi:10.1007/s10109-016-0234-x.

[RMA11]

Sergio J. Rey, Alan T. Murray, and Luc Anselin. Visualizing regional income distribution dynamics. Letters in Spatial and Resource Sciences, 4(1):81–90, 2011. URL: https://doi.org/10.1007/s12076-010-0048-2, doi:10.1007/s12076-010-0048-2.