giddy.rank.Tau_Local_Neighborhood¶
- class giddy.rank.Tau_Local_Neighborhood(x, y, w, permutations=0)[source]¶
Neighborhood set LIMA.
An extension of neighbor set LIMA. Consider local concordance relationships for a subset of states, defined as the focal state and its neighbors.
- Parameters:
- xarray
(n, ), first variable.
- yarray
(n, ), second variable.
- wW
spatial weights object.
- permutationsint
number of random spatial permutations for computationally based inference.
Notes
The equation for calculating neighborhood set LIMA statistic can be found in [Rey16] Equation (22).
Examples
>>> import libpysal as ps >>> from giddy.rank import Tau_Local_Neighborhood >>> import numpy as np >>> np.random.seed(10) >>> f = ps.io.open(ps.examples.get_path("mexico.csv")) >>> vnames = ["pcgdp%d"%dec for dec in range(1940, 2010, 10)] >>> y = np.transpose(np.array([f.by_col[v] for v in vnames])) >>> r = y / y.mean(axis=0) >>> regime = np.array(f.by_col['esquivel99']) >>> w = ps.weights.block_weights(regime) >>> res = Tau_Local_Neighborhood(r[:,0],r[:,1],w,permutations=999) >>> res.tau_lnhood array([0.06666667, 0.6 , 0.2 , 0.8 , 0.33333333, 0.6 , 0.6 , 0.2 , 1. , 0.06666667, 0.06666667, 0.33333333, 0.33333333, 0.2 , 1. , 0.33333333, 0.33333333, 0.2 , 0.6 , 0.33333333, 0.33333333, 0.06666667, 0.8 , 0.06666667, 0.2 , 0.6 , 0.8 , 0.6 , 0.33333333, 0.8 , 0.8 , 0.06666667]) >>> res.tau_lnhood_pvalues array([0.106, 0.33 , 0.107, 0.535, 0.137, 0.414, 0.432, 0.169, 1. , 0.03 , 0.019, 0.146, 0.249, 0.1 , 0.908, 0.225, 0.311, 0.125, 0.399, 0.215, 0.334, 0.115, 0.669, 0.045, 0.11 , 0.525, 0.655, 0.466, 0.236, 0.413, 0.504, 0.038]) >>> res.sign array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
- Attributes:
- nint
number of observations.
- tau_localarray
(n, ), local concordance (local version of the classic tau).
- Sarray
(n ,n), concordance matrix, s_{i,j}=1 if observation i and j are concordant, s_{i, j}=-1 if observation i and j are discordant, and s_{i,j}=0 otherwise.
- tau_lnhoodarray
(n, ), observed neighborhood set LIMA values.
- tau_lnhood_simarray
(n, permutations), neighborhood set LIMA values for permuted samples (if permutations>0).
- tau_lnhood_pvaluesarray
(n, 1), one-sided pseudo p-values for observed neighborhood set LIMA values under the null that the concordance relationships for a subset of states, defined as the focal state and its neighbors, is different from what would be expected from randomly distributed rank changes.
- signarray
(n, ), values indicate concordant or disconcordant: 1 concordant, -1 disconcordant
Methods
__init__
(x, y, w[, permutations])