esda.fdr¶
- esda.fdr(pvalues, alpha=0.05)[source]¶
Calculate the p-value cut-off to control for the false discovery rate (FDR) for multiple testing.
If by controlling for FDR, all of n null hypotheses are rejected, the conservative Bonferroni bound (alpha/n) is returned instead.
- Parameters:
- Returns:
- :
float
Adjusted criterion for rejecting the null hypothesis. If by controlling for FDR, all of n null hypotheses are rejected, the conservative Bonferroni bound (alpha/n) is returned.
- :
Notes
For technical details see [BY01] and [dCS06].
Examples
>>> import libpysal >>> import numpy as np >>> np.random.seed(10) >>> w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("stl_hom.txt")) >>> y = np.array(f.by_col['HR8893']) >>> from esda.moran import Moran_Local >>> from esda import fdr >>> lm = Moran_Local(y, w, transformation = "r", permutations = 999) >>> fdr(lm.p_sim, 0.1) 0.002564102564102564 >>> fdr(lm.p_sim, 0.05) #return the conservative Bonferroni bound 0.000641025641025641