esda.Spatial_Pearson_Local¶
- class esda.Spatial_Pearson_Local(connectivity=None, permutations=999)[source]¶
Local Spatial Pearson Statistic
- __init__(connectivity=None, permutations=999)[source]¶
Initialize a spatial local pearson estimator
- Parameters:
- connectivity: scipy.sparse matrix object
the connectivity structure describing the relationships between observed units. Will be row-standardized.
- permutations: int
the number of permutations to conduct for inference. if < 1, no permutational inference will be conducted.
- significance_: numpy.ndarray (2,2)
permutation-based p-values for the fraction of times the observed correlation was more extreme than the simulated correlations.
- Attributes
- ———-
- associations_: numpy.ndarray (n_samples,)
array containg the estimated Lee spatial pearson correlation coefficients, where element [0,1] is the spatial correlation coefficient, and elements [0,0] and [1,1] are the “spatial smoothing factor”
- reference_distribution_: numpy.ndarray (n_permutations, n_samples)
distribution of correlation matrices for randomly-shuffled maps.
- significance_: numpy.ndarray (n_samples,)
permutation-based p-values for the fraction of times the observed correlation was more extreme than the simulated correlations.
Notes
Technical details and derivations can be found in [Lee01].
Methods
__init__
([connectivity, permutations])Initialize a spatial local pearson estimator
fit
(x, y)Bivariate local pearson's R based on Eq.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_fit_request
(*[, x])Configure whether metadata should be requested to be passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
- fit(x, y)[source]¶
Bivariate local pearson’s R based on Eq. 22 in Lee (2001), using site-wise conditional randomization from Moran_Local_BV.
\[L_i = \dfrac{ n \cdot \Big[ig(\sum_i w_{ij}(x_j - ar{x})ig) ig(\sum_i w_{ij}(y_j - ar{y})ig) \Big] } { \sqrt{\sum_i (x_i - ar{x})^2} \sqrt{\sum_i (y_i - ar{y})^2}} = \dfrac{ n \cdot ( ilde{x}_j - ar{x}) ( ilde{y}_j - ar{y}) } { \sqrt{\sum_i (x_i - ar{x})^2} \sqrt{\sum_i (y_i - ar{y})^2}}\]Lee, Sang Il. (2001), “Developing a bivariate spatial association measure: An integration of Pearson’s r and Moran’s I.” Journal of Geographical Systems, 3(4):369-385.
- Parameters:
- x
numpy.ndarray
array containing continuous data
- y
numpy.ndarray
array containing continuous data
- x
- Returns:
the
fitted estimator.
- set_fit_request(*, x: bool | None | str = '$UNCHANGED$') Spatial_Pearson_Local ¶
Configure whether metadata should be requested to be passed to the
fit
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.