esda.LOSH¶
- class esda.LOSH(connectivity=None, inference=None)[source]¶
Local spatial heteroscedasticity (LOSH)
- __init__(connectivity=None, inference=None)[source]¶
Initialize a losh estimator
- Parameters:
- connectivity
W
|Graph
spatial weights instance as W or Graph aligned with y
- inference
str
describes type of inference to be used. options are “chi-square” or “permutation” methods.
- connectivity
- Attributes:
Methods
__init__
([connectivity, inference])Initialize a losh estimator
fit
(y[, a])get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_fit_request
(*[, a])Configure whether metadata should be requested to be passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
- fit(y, a=2)[source]¶
- Parameters:
- y
numpy.ndarray
array containing continuous data
- a
int
residual multiplier. Default is 2 in order to generate a variance measure. Users may use 1 for absolute deviations.
- y
- Returns:
the
fitted estimator.
Notes
Technical details and derivations can be found in [].
Examples
>>> import libpysal >>> w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() >>> f = libpysal.io.open(libpysal.examples.get_path("stl_hom.txt")) >>> y = np.array(f.by_col['HR8893']) >>> from esda import losh >>> ls = losh(connectivity=w, inference="chi-square").fit(y) >>> np.round(ls.Hi[0], 3) >>> np.round(ls.pval[0], 3)
Boston housing data replicating R spdep::LOSH() >>> import libpysal >>> import geopandas as gpd >>> boston = libpysal.examples.load_example(‘Bostonhsg’) >>> boston_ds = gpd.read_file(boston.get_path(‘boston.shp’)) >>> w = libpysal.weights.Queen.from_dataframe(boston_ds) >>> ls = losh(connectivity=w, inference=”chi-square”).fit(boston[‘NOX’]) >>> np.round(ls.Hi[0], 3) >>> np.round(ls.VarHi[0], 3)
- set_fit_request(*, a: bool | None | str = '$UNCHANGED$') LOSH ¶
Configure whether metadata should be requested to be passed to the
fit
method.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True
(seesklearn.set_config()
). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.