esda.Geary_Local_MV¶
- class esda.Geary_Local_MV(connectivity=None, permutations=999, drop_islands=True)[source]¶
Local Geary - Multivariate
- __init__(connectivity=None, permutations=999, drop_islands=True)[source]¶
Initialize a Local_Geary_MV estimator
- Parameters:
- connectivity
W
|Graph
spatial weights instance as W or Graph aligned with y
- permutations
int
(default=999) number of random permutations for calculation of pseudo p_values
- drop_islandsbool (default
True
) Whether or not to preserve islands as entries in the adjacency list. By default, observations with no neighbors do not appear in the adjacency list. If islands are kept, they are coded as self-neighbors with zero weight. See
libpysal.weights.to_adjlist()
.
- connectivity
- Attributes:
Methods
__init__
([connectivity, permutations, ...])Initialize a Local_Geary_MV estimator
fit
(variables)get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_fit_request
(*[, variables])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
- fit(variables)[source]¶
- Parameters:
- variables
numpy.ndarray
array containing continuous data
- variables
- Returns:
the
fitted estimator.
Notes
Technical details and derivations can be found in [].
Examples
Guerry data replication GeoDa tutorial >>> import libpysal >>> import geopandas as gpd >>> guerry = lp.examples.load_example(‘Guerry’) >>> guerry_ds = gpd.read_file(guerry.get_path(‘Guerry.shp’)) >>> w = libpysal.weights.Queen.from_dataframe(guerry_ds) >>> import libpysal >>> import geopandas as gpd >>> guerry = lp.examples.load_example(‘Guerry’) >>> guerry_ds = gpd.read_file(guerry.get_path(‘Guerry.shp’)) >>> w = libpysal.weights.Queen.from_dataframe(guerry_ds) >>> x1 = guerry_ds[‘Donatns’] >>> x2 = guerry_ds[‘Suicids’] >>> lG_mv = Local_Geary(connectivity=w).fit([x1,x2]) >>> lG_mv.localG[0:5] >>> lG_mv.p_sim[0:5]
- set_fit_request(*, variables: bool | None | str = '$UNCHANGED$') Geary_Local_MV ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.