esda.Gamma¶
- class esda.Gamma(y, w, operation='c', standardize=False, permutations=999)[source]¶
Gamma index for spatial autocorrelation
- Parameters:
- y
array
variable measured across n spatial units
- w
W
|Graph
spatial weights instance as W or Graph aligned with y can be binary or row-standardized
- operation{‘c’, ‘s’, ‘a’}
attribute similarity function where, ‘c’ cross product ‘s’ squared difference ‘a’ absolute difference
- standardize{
False
,True
} standardize variables first False, keep as is True, standardize to mean zero and variance one
- permutations
int
number of random permutations for calculation of pseudo-p_values
- y
Notes
For further technical details see [HGC81].
Examples
use same example as for join counts to show similarity
>>> import libpysal, numpy as np >>> from esda.gamma import Gamma >>> w = libpysal.weights.lat2W(4,4) >>> y=np.ones(16) >>> y[0:8]=0 >>> np.random.seed(12345) >>> g = Gamma(y,w) >>> g.g 20.0 >>> round(g.g_z, 3) 3.188 >>> round(g.p_sim_g, 3) 0.003 >>> g.min_g 0.0 >>> g.max_g 20.0 >>> g.mean_g 11.093093093093094 >>> np.random.seed(12345) >>> g1 = Gamma(y,w,operation='s') >>> g1.g 8.0 >>> round(g1.g_z, 3) -3.706 >>> g1.p_sim_g 0.001 >>> g1.min_g 14.0 >>> g1.max_g 48.0 >>> g1.mean_g 25.623623623623622 >>> np.random.seed(12345) >>> g2 = Gamma(y,w,operation='a') >>> g2.g 8.0 >>> round(g2.g_z, 3) -3.706 >>> g2.p_sim_g 0.001 >>> g2.min_g 14.0 >>> g2.max_g 48.0 >>> g2.mean_g 25.623623623623622 >>> np.random.seed(12345) >>> g3 = Gamma(y,w,standardize=True) >>> g3.g 32.0 >>> round(g3.g_z, 3) 3.706 >>> g3.p_sim_g 0.001 >>> g3.min_g -48.0 >>> g3.max_g 20.0 >>> g3.mean_g -3.2472472472472473 >>> np.random.seed(12345) >>> def func(z,i,j): ... q = z[i]*z[j] ... return q ... >>> g4 = Gamma(y,w,operation=func) >>> g4.g 20.0 >>> round(g4.g_z, 3) 3.188 >>> round(g4.p_sim_g, 3) 0.003
- Attributes:
- y
array
original variable
- w
W
original w object
- op{‘c’, ‘s’, ‘a’}
attribute similarity function, as per parameters attribute similarity function
- stand{
False
,True
} standardization
- permutations
int
number of permutations
- gamma
float
value of Gamma index
- sim_g
array
(if permutations>0) vector of Gamma index values for permuted samples
- p_sim_g
array
(if permutations>0) p-value based on permutations (one-sided) null: spatial randomness alternative: the observed Gamma is more extreme than under randomness implemented as a two-sided test
- mean_g
float
average of permuted Gamma values
- min_g
float
minimum of permuted Gamma values
- max_g
float
maximum of permuted Gamma values
- y
Methods
__init__
(y, w[, operation, standardize, ...])by_col
(df, cols[, w, inplace, pvalue, outvals])Attributes
new name to fit with Moran module
- classmethod by_col(df, cols, w=None, inplace=False, pvalue='sim', outvals=None, **stat_kws)[source]¶
- property p_sim¶
new name to fit with Moran module