Access Class API¶
- class access.Access(demand_df, demand_value, supply_df, supply_value=False, demand_index=True, supply_index=True, cost_df=None, cost_origin=None, cost_dest=None, cost_name=None, neighbor_cost_df=None, neighbor_cost_origin=None, neighbor_cost_dest=None, neighbor_cost_name=None)[source]¶
Spatial Access Class
- Parameters:
- demand_dfpandas.DataFrame or geopandas.GeoDataFrame
The origins dataframe, containing a location index and, optionally, a level of demand and geometry.
- demand_index{bool, str}
boolean of True indicates that the locations are already on the df index; otherwise the argument is a string containing the name of the column of demand_df that holds the origin ID.
- demand_valuestr
is the name of the column of demand that holds the aggregate demand at a location.
- supply_dfpandas.DataFrame or geopandas.GeoDataFrame
The origins dataframe, containing a location index and, optionally, level of supply and geometry.
- supply_index{bool, str}
boolean of True indicates that the locations are already on the df index; otherwise the argument is a string containing the name of the column of supply_df that holds the origin ID.
- supply_value{str, list}
is the name of the column of supply that holds the aggregate supply at a location, or a list of such columns.
- cost_dfpandas.DataFrame
This dataframe contains a link from demand to supply locations, and a cost between them.
- cost_originstr
The column name of the index locations – this is what will be grouped by.
- cost_deststr
The column name of the neighborhing demand locations – this is what goes in the groups.
- cost_name{str, list}
The column(s) name of the travel cost(s).
- neighbor_cost_dfpandas.DataFrame
This dataframe contains a link from demand to neighbor locations, and a cost between them (running consumer to supplier).
- neighbor_cost_originstr
The column name of the origin locations – this is what will be grouped by.
- neighbor_cost_deststr
The column name of the destination locations – this is what goes in the groups.
- neighbor_cost_name{str, list}
The column name(s) of the travel cost(s).
- Attributes:
- Accesspandas.DataFrame
All of the calculated access measures.
- access_metadatapandas.DataFrame
Lists currently-available measures of access.
- cost_metadatapandas.DataFrame
Describes each of the currently-available supply to demand costs.
Methods
append_user_cost
(new_cost_df, origin, ...)Create a user cost, from demand to supply locations.
append_user_cost_neighbors
(new_cost_df, ...)Create a user cost, from supply locations to other supply locations.
create_euclidean_distance
([name, threshold, ...])Calculate the Euclidean distance from demand to supply locations.
create_euclidean_distance_neighbors
([name, ...])Calculate the Euclidean distance among demand locations.
enhanced_two_stage_fca
([name, cost, ...])Calculate the enhanced two-stage floating catchment area access score.
fca_ratio
([name, demand_cost, supply_cost, ...])Calculate the floating catchment area (buffer) ratio access score.
raam
([name, cost, supply_values, normalize, ...])Calculate the rational agent access model.
score
(col_dict[, name])Weighted aggregate of multiple already-calculated, normalized access components.
three_stage_fca
([name, cost, supply_values, ...])Calculate the three-stage floating catchment area access score.
two_stage_fca
([name, cost, max_cost, ...])Calculate the two-stage floating catchment area access score.
weighted_catchment
([name, supply_cost, ...])Calculate the catchment area (buffer) aggregate access score.
- __init__(demand_df, demand_value, supply_df, supply_value=False, demand_index=True, supply_index=True, cost_df=None, cost_origin=None, cost_dest=None, cost_name=None, neighbor_cost_df=None, neighbor_cost_origin=None, neighbor_cost_dest=None, neighbor_cost_name=None)[source]¶
Initialize the class.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost")
- append_user_cost(new_cost_df, origin, destination, name)[source]¶
Create a user cost, from demand to supply locations.
- Parameters:
- new_cost_dfpandas.DataFrame
Holds the new cost….
- namestr
Name of the new cost variable in new_cost_df
- originstr
Name of the new origin variable in new_cost_df
- destinationstr
Name of the new destination variable in new_cost_df
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost")
To add a new cost from demand to supply locations, first load the new cost data.
>>> euclidean_cost = Datasets.load_data('chi_euclidean') euclidean_cost.head() origin dest euclidean 0 17093890101 17031010100 63630.788476 1 17093890101 17031010201 62632.675522 2 17093890101 17031010202 63073.735631 3 17093890101 17031010300 63520.029749 4 17093890101 17031010400 63268.514352
Add new cost data to existing Access instance.
>>> chicago_primary_care.append_user_cost(new_cost_df = euclidean_cost, name = "euclidean", origin = "origin", destination = "dest")
The newly added cost data can be seen in the cost_df attribute.
>>> chicago_primary_care.cost_df.head() origin dest cost euclidean 0 17093890101 17031010100 91.20 63630.788476 1 17093890101 17031010201 92.82 62632.675522 2 17093890101 17031010202 92.95 63073.735631 3 17093890101 17031010300 89.40 63520.029749 4 17093890101 17031010400 84.97 63268.514352
- append_user_cost_neighbors(new_cost_df, origin, destination, name)[source]¶
Create a user cost, from supply locations to other supply locations.
- Parameters:
- new_cost_dfpandas.DataFrame
Holds the new cost….
- coststr
Name of the new cost variable in new_cost_df
- originstr
Name of the new origin variable in new_cost_df
- destinationstr
Name of the new destination variable in new_cost_df
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost")
To add a new cost from demand to supply locations, first load the new cost data.
>>> euclidean_cost_neighbors = Datasets.load_data('chi_euclidean_neighbors') euclidean_cost_neighbors.head() origin dest euclidean_neighbors 0 17031010100 17031010100 0.000000 1 17031010100 17031010201 998.259243 2 17031010100 17031010202 635.203387 3 17031010100 17031010300 653.415713 4 17031010100 17031010400 2065.375554
Add new cost data to existing Access instance.
>>> chicago_primary_care.append_user_cost_neighbors(new_cost_df = euclidean_cost_neighbors, name = "euclidean_neighbors", origin = "origin", destination = "dest")
The newly added cost data can be seen in the neighbor_cost_df attribute.
>>> chicago_primary_care.neighbor_cost_df.head() origin dest cost euclidean_neighbors 0 17093890101 17031010100 91.20 63630.788476 1 17093890101 17031010201 92.82 62632.675522 2 17093890101 17031010202 92.95 63073.735631 3 17093890101 17031010300 89.40 63520.029749 4 17093890101 17031010400 84.97 63268.514352
- create_euclidean_distance(name='euclidean', threshold=0, centroid_o=False, centroid_d=False)[source]¶
Calculate the Euclidean distance from demand to supply locations. This is simply the geopandas distance function. The user is responsible for putting the geometries into an appropriate reference system.
- Parameters:
- namestr
Column name for euclidean distances
- thresholdint
Buffer threshold for non-point geometries, AKA max_distance
- centroid_obool
If True, convert geometries of demand_df (origins) to centroids; otherwise, no change
- centroid_dbool
If True, convert geometries of supply_df (destinations) to centroids; otherwise, no change
Examples
NOTE: Creating euclidean distance measures requires having a geometry column in a geopandas.GeoDataFrame.
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc_geom') >>> chi_population = Datasets.load_data('chi_pop_geom') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() doc dentist geometry geoid 17031010100 1 1 POINT (354916.992 594670.505) 17031010201 0 1 POINT (354105.876 594088.600) 17031010202 4 1 POINT (354650.684 594093.822) 17031010300 4 1 POINT (355209.361 594086.149) 17031010400 0 2 POINT (355809.748 592808.043)
>>> chi_population.head() pop geometry geoid 17031010100 4854 POINT (354916.992 594670.505) 17031010201 6450 POINT (354105.876 594088.600) 17031010202 2818 POINT (354650.684 594093.822) 17031010300 6236 POINT (355209.361 594086.149) 17031010400 5042 POINT (355809.748 592808.043)
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
To calculate euclidean distances between Census Tracts within 250km of eachother, you can set the threshold to 250000 (meters). Setting centroid_o and centroid_d to True calculates the centroid of the geom in your dataset.
>>> chicago_primary_care.create_euclidean_distance(threshold = 250000, centroid_o = True, centroid_d = True)
The newly calculated euclidean costs are added to the cost_df attribute of the Access class.
>>> chicago_primary_care_geom.cost_df.head() origin dest cost euclidean 0 17093890101 17031010100 91.20 63630.788476 1 17093890101 17031010201 92.82 62632.675522 2 17093890101 17031010202 92.95 63073.735631 3 17093890101 17031010300 89.40 63520.029749 4 17093890101 17031010400 84.97 63268.514352
- create_euclidean_distance_neighbors(name='euclidean', threshold=0, centroid=False)[source]¶
Calculate the Euclidean distance among demand locations.
- Parameters:
- namestr
Column name for euclidean distances neighbors
- thresholdint
Buffer threshold for non-point geometries, AKA max_distance
- centroidbool
If True, convert geometries to centroids; otherwise, no change
Examples
NOTE: Creating euclidean distance measures requires having a geometry column in a geopandas.GeoDataFrame.
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc_geom') >>> chi_population = Datasets.load_data('chi_pop_geom') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() doc dentist geometry geoid 17031010100 1 1 POINT (354916.992 594670.505) 17031010201 0 1 POINT (354105.876 594088.600) 17031010202 4 1 POINT (354650.684 594093.822) 17031010300 4 1 POINT (355209.361 594086.149) 17031010400 0 2 POINT (355809.748 592808.043)
>>> chi_population.head() pop geometry geoid 17031010100 4854 POINT (354916.992 594670.505) 17031010201 6450 POINT (354105.876 594088.600) 17031010202 2818 POINT (354650.684 594093.822) 17031010300 6236 POINT (355209.361 594086.149) 17031010400 5042 POINT (355809.748 592808.043)
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Make sure you assign your desired geometry projection, which you can change as follows.
>>> chi_population = chi_population.to_crs(epsg = 2790) >>> chi_docs_dents = chi_docs_dents.to_crs(epsg = 2790)
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
To calculate euclidean distances between Census Tracts within 250km of eachother, you can set the threshold to 250000 (meters). Setting centroid_o and centroid_d to True calculates the centroid of the geom in your dataset.
>>> chicago_primary_care.create_euclidean_distance_neighbors(name= 'euclidean_neighbors', threshold = 250000, centroid_o = True, centroid_d = True)
The newly calculated euclidean distance is stored in the neighbor_cost_df attribute.
>>> chicago_primary_care_geom.neighbor_cost_df.head() origin dest euclidean_neighbors 0 17031010100 17031010100 0.000000 1 17031010100 17031010201 998.259243 2 17031010100 17031010202 635.203387 3 17031010100 17031010300 653.415713 4 17031010100 17031010400 2065.375554
- enhanced_two_stage_fca(name='e2sfca', cost=None, supply_values=None, max_cost=None, weight_fn=None, normalize=False)[source]¶
Calculate the enhanced two-stage floating catchment area access score. Note that the only ‘practical’ difference between this function and the
Access.access.two_stage_fca()
is that the weight function from the original paper, weights.step_fn({10 : 1, 20 : 0.68, 30 : 0.22}) is applied if none is provided.- Parameters:
- namestr
Column name for access values
- coststr
Name of cost value column in cost_df (supply-side)
- max_costfloat
Cutoff of cost values
- supply_values{str, list}
supply type or types.
- weight_fnfunction
Weight to be applied to access values
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost")
We can create multiple stepwise functions for weights.
>>> fn30 = weights.step_fn({10 : 1, 20 : 0.68, 30 : 0.22}) >>> fn60 = weights.step_fn({20 : 1, 40 : 0.68, 60 : 0.22})
Using those two difference stepwise functions, we can create two separate enhanced two stage fca measures.
>>> chicago_primary_care.enhanced_two_stage_fca(name = '2sfca30', weight_fn = fn30) 2sfca30_doc 2sfca30_dentist geoid 17031010100 0.000970 0.000461 17031010201 0.001080 0.000557 17031010202 0.001027 0.000531 ........... ........ ........ 17197884101 0.000159 0.000241 17197884103 0.000285 0.000342 17197980100 0.000266 0.000310
Note the use of the name argument in order to specify a different column name prefix for the access measure.
>>> chicago_primary_care.enhanced_two_stage_fca(name = '2sfca60', weight_fn = fn60) 2sfca60_doc 2sfca60_dentist geoid 17031010100 0.000687 0.000394 17031010201 0.000750 0.000447 17031010202 0.000720 0.000416 ........... ........ ........ 17197884101 0.000392 0.000301 17197884103 0.000289 0.000243 17197980100 0.000333 0.000268
Both newly created enhanced two stage fca measures are stored in the access_df attribute of the Access object.
>>> chicago_primary_care.access_df.head() pop 2sfca30_doc 2sfca30_dentist 2sfca60_doc 2sfca60_dentist geoid 17031010100 4854 0.000970 0.000461 0.000687 0.000394 17031010201 6450 0.001080 0.000557 0.000750 0.000447 17031010202 2818 0.001027 0.000531 0.000720 0.000416 17031010300 6236 0.001030 0.000496 0.000710 0.000402 17031010400 5042 0.000900 0.000514 0.000786 0.000430
- fca_ratio(name='fca', demand_cost=None, supply_cost=None, supply_values=None, max_cost=None, normalize=False, noise='quiet')[source]¶
Calculate the floating catchment area (buffer) ratio access score.
- Parameters:
- namestr
Column name for access values
- demand_coststr
Name of demand cost value column in demand_df
- supply_coststr
Name of supply cost value column in supply_df
- supply_values{str, list}
Name(s) of supply values in supply_df
- max_costfloat
Cutoff of cost values
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- noisestr
Default ‘quiet’, otherwise gives messages that indicate potential issues.
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost", neighbor_cost_df = chi_travel_costs, neighbor_cost_origin = "origin", neighbor_cost_dest = 'dest', neighbor_cost_name = 'cost')
>>> chicago_primary_care.fca_ratio(name='fca',max_cost=30) fca_doc fca_dentist geoid 17031010100 0.001630 0.000807 17031010201 0.001524 0.000904 17031010202 0.001521 0.000908 ........... ........ ........ 17197884101 0.000437 0.000442 17197884103 0.000510 0.000498 17197980100 0.000488 0.000432
- raam(name='raam', cost=None, supply_values=None, normalize=False, tau=60, rho=None, max_cycles=150, initial_step=0.2, half_life=50, min_step=0.005, verbose=False)[source]¶
Calculate the rational agent access model. [Saxon and Snow, 2019]
- Parameters:
- namestr
Column name for access values
- coststr
Name of cost variable, for reaching supply sites.
- supply_values{str, list}
Name(s) of supply values in supply_df
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- taufloat
tau parameter (travel time scale)
- rhofloat
rho parameter (congestion cost scale)
- max_cyclesint
How many cycles to run the RAAM optimization for.
- initial_step{int, float}
If an float < 1, it is the proportion of a demand site that can shift, in the first cycle. If it is an integer, it is simply a limit on the total number.
- half_lifeint
How many cycles does it take to halve the move rate?
- min_step{int, float}
This is the minimum value, to which the moving fraction converges.
- verbosebool
Print some information as the optimization proceeds.
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
With the demand, supply, and cost data provided, we can now produce the RAAM access measures defining a floating catchment area of 30 minutes by setting the tau value to 30 (60 minutes is the default).
>>> chicago_primary_care.raam(tau = 30) raam_doc raam_dentist geoid 17031010100 1.027597 1.137901 17031010201 0.940239 1.332557 17031010202 1.031144 1.413279 ........... ........ ........ 17197884101 2.365171 1.758800 17197884103 2.244007 1.709857 17197980100 2.225820 1.778264
You can access the results stored in the Access.access_df attribute.
>>> chicago_primary_care.access_df pop raam_doc raam_dentist geoid 17031010100 4854 1.027597 1.137901 17031010201 6450 0.940239 1.332557 17031010202 2818 1.031144 1.413279 ........... .... ........ ........ 17197884101 4166 2.365171 1.758800 17197884103 2776 2.244007 1.709857 17197980100 3264 2.225820 1.778264
By providing a string to the name argument, you can call the Access.raam method again using a different parameter of tau and save the outputs without overwriting previous ones.
>>> chicago_primary_care.raam(name = "raam2", tau = 2) >>> chicago_primary_care.access_df pop raam_doc raam_dentist raam45_doc raam45_dentist geoid 17031010100 4854 1.027597 1.137901 0.967900 1.075116 17031010201 6450 0.940239 1.332557 0.908518 1.133207 17031010202 2818 1.031144 1.413279 0.962915 1.206775 ........... .... ........ ........ ........ ........ 17197884101 4166 2.365171 1.758800 1.921161 1.495642 17197884103 2776 2.244007 1.709857 1.900596 1.517022 17197980100 3264 2.225820 1.778264 1.868281 1.582177
If euclidean costs are available (see
Access.access.create_euclidean_distance()
), you can use euclidean distance instead of time to calculate RAAM access measures. Insted of being measured in minutes, tau would now be measured in meters.>>> chicago_primary_care.raam(name = "raam_euclidean", tau = 100, cost = "euclidean")
- score(col_dict, name='score')[source]¶
Weighted aggregate of multiple already-calculated, normalized access components.
- Parameters:
- namestr
Column name for access values
- col_dictdict
Column names (keys) and weights.
- Returns:
- accesspandas Series
Single, aggregate score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
With the demand, supply, and cost data provided, we can now produce the RAAM access measures defining a floating catchment area of 30 minutes by setting the tau value to 30 (60 minutes is the default).
>>> chicago_primary_care.raam(tau = 30) raam_doc raam_dentist geoid 17031010100 1.027597 1.137901 17031010201 0.940239 1.332557 17031010202 1.031144 1.413279 ........... ........ ........ 17197884101 2.365171 1.758800 17197884103 2.244007 1.709857 17197980100 2.225820 1.778264
Aggregate RAAM for doctors and dentists, weighting doctors more heavily.
>>> chicago_primary_care.score(name = "raam_combo", col_dict = {"raam_doc" : 0.8, "raam_dentist" : 0.2}) geoid 17031010100 0.786697 17031010201 0.765081 17031010202 0.831578 ........... ........ 17197884101 1.677075 17197884103 1.597554 17197980100 1.597386
- three_stage_fca(name='3sfca', cost=None, supply_values=None, max_cost=None, weight_fn=None, normalize=False)[source]¶
Calculate the three-stage floating catchment area access score.
- Parameters:
- namestr
Column name for access values
- coststr
Name of cost value column in cost_df (supply-side)
- max_costfloat
Cutoff of cost values
- weight_fnfunction
Weight to be applied to access values
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost")
>>> chicago_primary_care.three_stage_fca(name='3sfca') 3sfca_doc 3sfca_dentist geoid 17031010100 0.001424 0.000690 17031010201 0.001462 0.000785 17031010202 0.001411 0.000767 ........... ........ ........ 17197884101 0.000285 0.000380 17197884103 0.000404 0.000464 17197980100 0.000365 0.000407
The newly calculated 3sfca access measure is added to the access_df attribute of the Access object.
>>> chicago_primary_care.access_df.head() 3sfca_doc 3sfca_dentist geoid 17031010100 0.001447 0.000698 17031010201 0.001487 0.000795 17031010202 0.001420 0.000777 17031010300 0.001479 0.000742 17031010400 0.001274 0.000726
- two_stage_fca(name='2sfca', cost=None, max_cost=None, supply_values=None, weight_fn=None, normalize=False)[source]¶
Calculate the two-stage floating catchment area access score. Note that while the ‘traditional’ 2SFCA method does not weight inputs, most modern implementations do, and weight_fn is allowed as an argument.
- Parameters:
- namestr
Column name for access values
- coststr
Name of cost value column in cost_df (supply-side)
- supply_values{str, list}
supply type or types.
- max_costfloat
Cutoff of cost values
- weight_fnfunction
Weight to be applied to access values
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets:
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Using the example data, create an Access object.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "destination", cost_name = "cost", neighbor_cost_df = chi_travel_costs, neighbor_cost_origin = "origin", neighbor_cost_dest = 'dest', neighbor_cost_name = 'cost')
>>> chicago_primary_care.two_stage_fca(name = '2sfca', max_cost = 60) pop 2sfca_doc 2sfca_dentist geoid 17031010100 4854 0.000697 0.000402 17031010201 6450 0.000754 0.000455 17031010202 2818 0.000717 0.000424 ........... .... ........ ........ 17197884101 4166 0.000562 0.000370 17197884103 2776 0.000384 0.000291 17197980100 3264 0.000457 0.000325
To create new values for two-stage catchment areas using a different max_cost, you can use a new name and a different max_cost parameter.
>>> chicago_primary_care.two_stage_fca(name = '2sfca30', max_cost = 30) 2sfca30_doc 2sfca30_dentist geoid 17031010100 0.000966 0.000480 17031010201 0.000996 0.000552 17031010202 0.000973 0.000542 ........... ........ ........ 17197884101 0.000225 0.000258 17197884103 0.000375 0.000382 17197980100 0.000352 0.000318
Both newly created two stage fca measures are stored in the access_df attribute of the Access object.
>>> chicago_primary_care.access_df.head() pop 2sfca_doc 2sfca_dentist 2sfca30_doc 2sfca30_dentist geoid 17031010100 4854 0.000697 0.000402 0.000963 0.000479 17031010201 6450 0.000754 0.000455 0.000991 0.000551 17031010202 2818 0.000717 0.000424 0.000973 0.000541 17197884103 2776 0.000384 0.000291 0.000371 0.000377 17197980100 3264 0.000457 0.000325 0.000348 0.000314
- weighted_catchment(name='catchment', supply_cost=None, supply_values=None, weight_fn=None, max_cost=None, normalize=False)[source]¶
Calculate the catchment area (buffer) aggregate access score.
- Parameters:
- namestr
Column name for access values
- supply_coststr
Name of supply cost value column in supply_df
- supply_values{str, list}
Name(s) of supply values in supply_df
- weight_fnfunction
function to apply to the cost to reach the supply. In this way, you could run, e.g., a gravity function. (Be careful of course of values as distances go to 0!)
- max_costfloat
Cutoff of cost values
- normalizebool
If True, return normalized access values; otherwise, return raw access values
- Returns:
- accesspandas Series
Accessibility score for origin locations.
Examples
Create an Access object, as detailed in __init__.py
>>> illinois_primary_care = Access(<...>)
Call the floating catchment area with max_cost only
>>> gravity = weights.gravity(scale = 60, alpha = -1) >>> illinois_primary_care.weighted_catchment(weight_fn = gravity)