access.Access.create_euclidean_distance_neighbors¶
- Access.create_euclidean_distance_neighbors(name='euclidean', threshold=0, centroid=False)[source]¶
Calculate the Euclidean distance among demand locations.
- Parameters:
- namestr
Column name for euclidean distances neighbors
- thresholdint
Buffer threshold for non-point geometries, AKA max_distance
- centroidbool
If True, convert geometries to centroids; otherwise, no change
Examples
NOTE: Creating euclidean distance measures requires having a geometry column in a geopandas.GeoDataFrame.
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc_geom') >>> chi_population = Datasets.load_data('chi_pop_geom') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() doc dentist geometry geoid 17031010100 1 1 POINT (354916.992 594670.505) 17031010201 0 1 POINT (354105.876 594088.600) 17031010202 4 1 POINT (354650.684 594093.822) 17031010300 4 1 POINT (355209.361 594086.149) 17031010400 0 2 POINT (355809.748 592808.043)
>>> chi_population.head() pop geometry geoid 17031010100 4854 POINT (354916.992 594670.505) 17031010201 6450 POINT (354105.876 594088.600) 17031010202 2818 POINT (354650.684 594093.822) 17031010300 6236 POINT (355209.361 594086.149) 17031010400 5042 POINT (355809.748 592808.043)
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Make sure you assign your desired geometry projection, which you can change as follows.
>>> chi_population = chi_population.to_crs(epsg = 2790) >>> chi_docs_dents = chi_docs_dents.to_crs(epsg = 2790)
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
To calculate euclidean distances between Census Tracts within 250km of eachother, you can set the threshold to 250000 (meters). Setting centroid_o and centroid_d to True calculates the centroid of the geom in your dataset.
>>> chicago_primary_care.create_euclidean_distance_neighbors(name= 'euclidean_neighbors', threshold = 250000, centroid_o = True, centroid_d = True)
The newly calculated euclidean distance is stored in the neighbor_cost_df attribute.
>>> chicago_primary_care_geom.neighbor_cost_df.head() origin dest euclidean_neighbors 0 17031010100 17031010100 0.000000 1 17031010100 17031010201 998.259243 2 17031010100 17031010202 635.203387 3 17031010100 17031010300 653.415713 4 17031010100 17031010400 2065.375554