access.Access.score¶
- Access.score(col_dict, name='score')[source]¶
Weighted aggregate of multiple already-calculated, normalized access components.
- Parameters:
- namestr
Column name for access values
- col_dictdict
Column names (keys) and weights.
- Returns:
- accesspandas Series
Single, aggregate score for origin locations.
Examples
Import the base Access class and Datasets.
>>> from access import Access, Datasets
Load each of the example datasets which correspond to the demand (population), supply (doctors and dentists) and cost (travel time), respectively. The sample data represents the Chicago metro area with a 50km buffer around the city boundaries.
>>> chi_docs_dents = Datasets.load_data('chi_doc') >>> chi_population = Datasets.load_data('chi_pop') >>> chi_travel_costs = Datasets.load_data('chi_times')
>>> chi_docs_dents.head() geoid doc dentist 0 17031010100 1 1 1 17031010201 0 1 2 17031010202 4 1 3 17031010300 4 1 4 17031010400 0 2
>>> chi_population.head() geoid pop 0 17031010100 4854 1 17031010201 6450 2 17031010202 2818 3 17031010300 6236 4 17031010400 5042
The chi_travel_costs dataset is the cost matrix, showing the travel time between each of the Census Tracts in the Chicago metro area.
>>> chi_travel_costs.head() origin dest cost 0 17093890101 17031010100 91.20 1 17093890101 17031010201 92.82 2 17093890101 17031010202 92.95 3 17093890101 17031010300 89.40 4 17093890101 17031010400 84.97
Now, create an instance of the Access class and specify the demand, supply, and cost datasets.
>>> chicago_primary_care = Access(demand_df = chi_population, demand_index = "geoid", demand_value = "pop", supply_df = chi_docs_dents, supply_index = "geoid", supply_value = ["doc", "dentist"], cost_df = chi_travel_costs, cost_origin = "origin", cost_dest = "dest", cost_name = "cost")
With the demand, supply, and cost data provided, we can now produce the RAAM access measures defining a floating catchment area of 30 minutes by setting the tau value to 30 (60 minutes is the default).
>>> chicago_primary_care.raam(tau = 30) raam_doc raam_dentist geoid 17031010100 1.027597 1.137901 17031010201 0.940239 1.332557 17031010202 1.031144 1.413279 ........... ........ ........ 17197884101 2.365171 1.758800 17197884103 2.244007 1.709857 17197980100 2.225820 1.778264
Aggregate RAAM for doctors and dentists, weighting doctors more heavily.
>>> chicago_primary_care.score(name = "raam_combo", col_dict = {"raam_doc" : 0.8, "raam_dentist" : 0.2}) geoid 17031010100 0.786697 17031010201 0.765081 17031010202 0.831578 ........... ........ 17197884101 1.677075 17197884103 1.597554 17197980100 1.597386