segregation.inference.simulate_null¶
- segregation.inference.simulate_null(iterations=500, sim_func=None, seg_class=None, n_jobs=-1, backend='loky', index_kwargs=None, verbose=False)[source]¶
- Simulate a series of index values in parallel to serve as a null distribution. - Parameters:
- iterationsint,required
- Number of iterations to simulate (size of the distribution), by default 1000 
- sim_funcfunction,required
- population randomization function from segregation.inference to serve as the null hypothesis. 
- seg_funcClassfromsegregation.singlegrouporsegregation.singlegroup,required
- fitted segregation class from which to generate a reference distribution 
- n_jobsint,optional
- number of cpus to initialize for parallelization. If -1, use all available, by default -1 
- backendstr,optional
- backend passed to joblib.Parallel, by default “loky” 
- index_kwargsdict,optional
- additional keyword arguments used to fit the index, such as distance or network if estimating a spatial index; by default None 
- verbose: bool
- whether to print warning statements 
 
- iterations
- Returns:
- list
- pandas.Series of segregation indices for simulated data