mapclassify.classify¶
- mapclassify.classify(y, scheme, k=5, pct=[1, 10, 50, 90, 99, 100], pct_sampled=0.1, truncate=True, hinge=1.5, multiples=[-2, -1, 1, 2], mindiff=0, initial=100, bins=None, lowest=None, anchor=False)[source]¶
- Classify your data with - mapclassify.classify. Input parameters are dependent on classifier used.- Parameters:
- ynumpy.array
- \((n,1)\), values to classify. 
- schemestr
- pysal.mapclassifyclassification scheme.
- kint(default5)
- The number of classes. 
- pctnumpy.array(default[1, 10, 50, 90, 99, 100])
- Percentiles used for classification with - percentiles.
- pct_sampledfloatdefault(0.10)
- The percentage of n that should form the sample ( - JenksCaspallSampled,- FisherJenksSampled) If- pctis specified such that- n*pct > 1000, then- pct=1000.
- truncatebool (defaultTrue)
- Truncate - pct_sampledin cases where- pct * n > 1000.
- hingefloat(default1.5)
- Multiplier for IQR when - BoxPlotclassifier used.
- multiplesnumpy.array(default[-2,-1,1,2])
- The multiples of the standard deviation to add/subtract from the sample mean to define the bins using - std_mean.
- mindifffloat(defaultis0)
- The minimum difference between class breaks if using - maximum_breaksclassifier.
- initialint(default100)
- Number of initial solutions to generate or number of runs when using - natural_breaksor- max_p_classifier. Setting initial to- 0will result in the quickest calculation of bins.
- binsnumpy.array(defaultNone)
- \((k,1)\), upper bounds of classes (have to be monotically increasing) if using - user_definedclassifier. Default is- None. For example:- [20, max(y)].
- lowestfloat(defaultNone)
- Scalar minimum value of lowest class. Default is to set the minimum to - -infif- y.min()> first upper bound (which will override the default), otherwise minimum is set to- y.min().
- anchorbool (defaultFalse)
- Anchor upper bound of one class to the sample mean. 
 
- y
- Returns:
- classifiermapclassify.classifiers.MapClassifier
- Object containing bin ids for each observation ( - .yb), upper bounds of each class (- .bins), number of classes (- .k) and number of observations falling in each class (- .counts).
 
- classifier
 - Notes - Supported classifiers include: - quantiles
- boxplot
- equalinterval
- fisherjenks
- fisherjenkssampled
- headtailbreaks
- jenkscaspall
- jenkscaspallsampled
- jenks_caspallforced
- maxp
- maximumbreaks
- naturalbreaks
- percentiles
- prettybreaks
- stdmean
- userdefined
 - Examples - >>> import libpysal >>> import geopandas >>> from mapclassify import classify - Load example data. - >>> link_to_data = libpysal.examples.get_path("columbus.shp") >>> gdf = geopandas.read_file(link_to_data) >>> x = gdf['HOVAL'].values - Classify values by quantiles. - >>> quantiles = classify(x, "quantiles") - Classify values by box_plot and set hinge to - 2.- >>> box_plot = classify(x, 'box_plot', hinge=2) >>> box_plot BoxPlot Interval Count ---------------------- ( -inf, -9.50] | 0 (-9.50, 25.70] | 13 (25.70, 33.50] | 12 (33.50, 43.30] | 12 (43.30, 78.50] | 9 (78.50, 96.40] | 3