mapclassify.Pooled¶
- class mapclassify.Pooled(Y, classifier='Quantiles', **kwargs)[source]¶
Applying global binning across columns.
- Parameters:
- Y
numpy.array
\((n, m)\), values to classify, with \(m>1\).
- classifier
str
(default
‘Quantiles’) Name of
mapclassify.classifier
to apply.- **kwargs
dict
Additional keyword arguments for classifier.
- Y
- Attributes:
- global_classifier
mapclassify.classifiers.MapClassifier
Instance of the pooled classifier defined as the classifier applied to the union of the columns.
- col_classifier
list
Elements are
MapClassifier
instances with the pooled classifier applied to the associated column ofY
.
- global_classifier
Examples
>>> import mapclassify >>> import numpy >>> n = 20 >>> data = numpy.array([numpy.arange(n)+i*n for i in range(1,4)]).T >>> res = mapclassify.Pooled(data)
>>> res.col_classifiers[0].counts.tolist() [12, 8, 0, 0, 0]
>>> res.col_classifiers[1].counts.tolist() [0, 4, 12, 4, 0]
>>> res.col_classifiers[2].counts.tolist() [0, 0, 0, 8, 12]
>>> res.global_classifier.counts.tolist() [12, 12, 12, 12, 12]
>>> res.global_classifier.bins == res.col_classifiers[0].bins array([ True, True, True, True, True])
>>> res.global_classifier.bins array([31.8, 43.6, 55.4, 67.2, 79. ])
Methods
__init__
(Y[, classifier])