spreg.schwarz

spreg.schwarz(reg)[source]

Calculates the Schwarz Information Criterion. [S+78]

Parameters:
regregression object

output instance from a regression model

Returns:
bic_resultscalar

value for Schwarz (Bayesian) Information Criterion of the regression.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import spreg
>>> from spreg import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Schwarz Information Criterion.

>>> testresult = spreg.schwarz(reg)

Print the results.

>>> np.round(testresult, 5)
386.42994