spreg.f_stat¶
- spreg.f_stat(reg, df=0)[source]¶
Calculates the f-statistic and associated p-value for multiple coefficient constraints [Gre03]. (For two stage least squares see f_stat_tsls) (default is F statistic for regression)
- Parameters:
- reg
regression
object
output instance from a regression model
- df
number
of
coefficient
constraints
(zero constraint for last df coefficients in betas)
- reg
- Returns:
- fs_result
tuple
includes value of F statistic and associated p-value
- fs_result
Examples
>>> import numpy as np >>> import libpysal >>> from libpysal import examples >>> import spreg >>> from spreg import OLS
Read the DBF associated with the Columbus data.
>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),"r")
Create the dependent variable vector.
>>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1))
Create the matrix of independent variables.
>>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T
Run an OLS regression.
>>> reg = OLS(y,X)
Calculate the F-statistic for the regression.
>>> testresult = spreg.f_stat(reg)
Print the results tuple, including the statistic and its significance.
>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1]) 28.385629224695 0.000000009341