spreg.diagnostics_probit.sp_tests¶
- spreg.diagnostics_probit.sp_tests(regprob=None, obj_list=None)[source]¶
Calculates tests for spatial dependence in Probit models
- Parameters:
- Returns:
tuple
with
LM_Err
,moran
,ps
as
2x1arrays
with
statistic
and
p-valueLM_Err: Pinkse moran : Kelejian-Prucha generalized Moran ps : Pinkse-Slade
Examples
The results of this function will be automatically added to the output of the probit model if using spreg. If using the Probit estimator from statsmodels, the user can call the function with the obj_list argument. The argument obj_list should be a list with the following elements, in this order: [libpysal.weights, ProbitResults.fittedvalues, ProbitResults.resid_response, ProbitResults.resid_generalized] The function will then return and print the results of the spatial diagnostics.
>>> import libpysal >>> import statsmodels.api as sm >>> import geopandas as gpd >>> from spreg.diagnostics_probit import sp_tests
>>> columb = libpysal.examples.load_example('Columbus') >>> dfs = gpd.read_file(columb.get_path("columbus.shp")) >>> w = libpysal.weights.Queen.from_dataframe(dfs) >>> w.transform='r'
>>> y = (dfs["CRIME"] > 40).astype(float) >>> X = dfs[["INC","HOVAL"]] >>> X = sm.add_constant(X)
>>> probit_mod = sm.Probit(y, X) >>> probit_res = probit_mod.fit(disp=False) >>> LM_err, moran, ps = sp_tests(obj_list=[w, probit_res.fittedvalues, probit_res.resid_response, probit_res.resid_generalized]) PROBIT MODEL DIAGNOSTICS FOR SPATIAL DEPENDENCE TEST DF VALUE PROB Kelejian-Prucha (error) 1 1.721 0.0852 Pinkse (error) 1 3.132 0.0768 Pinkse-Slade (error) 1 2.558 0.1097