spreg.dgp.dgp_lagerr¶
- spreg.dgp.dgp_lagerr(u, xb, w, rho=0.5, lam=0.2, model='sar', imethod='power_exp', ybin=False)[source]¶
- dgp_lagerr: generates y for spatial lag model with sar or ma errors
with xb, weights, spatial parameter rho, spatial parameter lambda, model for spatial process, error term, method for inverse transform
Examples
>>> import numpy as np >>> import libpysal >>> from spreg import make_x, make_xb, dgp_lagerr >>> rng = np.random.default_rng(12345) >>> u = make_x(rng,25,mu=[0],varu=[1], method='normal') >>> x = make_x(rng,25,mu=[0],varu=[1]) >>> xb = make_xb(x,[1,2]) >>> w = libpysal.weights.lat2W(5, 5) >>> w.transform = "r" >>> dgp_lagerr(u, xb, w)[0:5,:] array([[10.13845523], [ 7.53009531], [ 5.40644034], [ 5.51132886], [ 8.58872366]])