spreg.Panel_FE_Lag

class spreg.Panel_FE_Lag(y, x, w, epsilon=1e-07, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)[source]

ML estimation of the fixed effects spatial lag model with all results and diagnostics [Elh03].

Parameters:
ynumpy.ndarray or pandas object

nxt or (nxt)x1 array for dependent variable

xnumpy.ndarray or pandas object

nx(txk) or (nxt)xk array for independent (exogenous) variables, no constant

wpysal W object

Spatial weights object

epsilonfloat

tolerance criterion in mimimize_scalar function and inverse_product

vmbool

if True, include variance-covariance matrix in summary results

name_ystr

Name of dependent variable for use in output

name_xlist of strings

Names of independent variables for use in output

name_wstr

Name of weights matrix for use in output

name_dsstr

Name of dataset for use in output

Attributes:
betasarray

(k+1)x1 array of estimated coefficients (rho last)

rhofloat

estimate of spatial autoregressive coefficient

uarray

(nxt)x1 array of residuals

predyarray

(nxt)x1 array of predicted y values

ninteger

Total number of observations

tinteger

Number of time periods

kinteger

Number of variables for which coefficients are estimated (no constant, excluding the rho)

yarray

(nxt)x1 array for dependent variable

xarray

Two dimensional array with nxt rows and one column for each independent (exogenous) variable, no constant

mean_yfloat

Mean of dependent variable

std_yfloat

Standard deviation of dependent variable

vmarray

Variance covariance matrix (k+1 x k+1), all coefficients

vm1array

Variance covariance matrix (k+2 x k+2), includes sig2

sig2float

Sigma squared used in computations

logllfloat

maximized log-likelihood (including constant terms)

aicfloat

Akaike information criterion

schwarzfloat

Schwarz criterion

predy_earray

predicted values from reduced form

e_predarray

prediction errors using reduced form predicted values

pr2float

Pseudo R squared (squared correlation between y and ypred)

pr2_efloat

Pseudo R squared (squared correlation between y and ypred_e (using reduced form))

utufloat

Sum of squared residuals

std_errarray

1x(k+1) array of standard errors of the betas

z_statlist of tuples

z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_ystr

Name of dependent variable for use in output

name_xlist of strings

Names of independent variables for use in output

name_wstr

Name of weights matrix for use in output

name_dsstr

Name of dataset for use in output

titlestr

Name of the regression method used

Examples

>>> import numpy as np
>>> import libpysal
>>> import spreg
>>> nat = libpysal.examples.load_example("NCOVR")
>>> db = libpysal.io.open(nat.get_path("NAT.dbf"), "r")
>>> nat_shp = libpysal.examples.get_path("NAT.shp")
>>> w = libpysal.weights.Queen.from_shapefile(nat_shp)
>>> w.transform = 'r'
>>> name_y = ["HR70", "HR80", "HR90"]
>>> y = np.array([db.by_col(name) for name in name_y]).T
>>> name_x = ["RD70", "RD80", "RD90", "PS70", "PS80", "PS90"]
>>> x = np.array([db.by_col(name) for name in name_x]).T
>>> fe_lag = spreg.Panel_FE_Lag(y, x, w, name_y=name_y, name_x=name_x, name_ds="NAT")
Warning: Assuming panel is in wide format, i.e. y[:, 0] refers to T0, y[:, 1] refers to T1, etc.
Similarly, assuming x[:, 0:T] refers to T periods of k1, x[:, T+1:2T] refers to k2, etc.
>>> np.around(fe_lag.betas, decimals=4)
array([[ 0.8006],
       [-2.6004],
       [ 0.1903]])
__init__(y, x, w, epsilon=1e-07, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)[source]

Methods

__init__(y, x, w[, epsilon, vm, name_y, ...])

Attributes

mean_y

sig2n

sig2n_k

std_y

utu

vm

property mean_y
property sig2n
property sig2n_k
property std_y
property utu
property vm