spreg.Panel_FE_Error¶
- class spreg.Panel_FE_Error(y, x, w, epsilon=1e-07, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)[source]¶
ML estimation of the fixed effects spatial error model with all results and diagnostics [Elh03].
- Parameters:
- y
numpy.ndarrayorpandasobject nxt or (nxt)x1 array for dependent variable
- x
numpy.ndarrayorpandasobject nx(txk) or (nxt)xk array for independent (exogenous) variables, no constant
- w
pysalWobject Spatial weights object
- epsilon
float tolerance criterion in mimimize_scalar function and inverse_product
- vmbool
if True, include variance-covariance matrix in summary results
- name_y
str Name of dependent variable for use in output
- name_x
listofstrings Names of independent variables for use in output
- name_w
str Name of weights matrix for use in output
- name_ds
str Name of dataset for use in output
- y
- Attributes:
- betas
array kx1 array of estimated coefficients
- lam
float estimate of spatial autoregressive coefficient
- u
array (nxt)x1 array of residuals
- e_filtered
array (nxt)x1 array of spatially filtered residuals
- predy
array (nxt)x1 array of predicted y values
- n
integer Total number of observations
- t
integer Number of time periods
- k
integer Number of variables for which coefficients are estimated (no constant, excluding the lambda)
- y
array (nxt)x1 array for dependent variable
- x
array Two dimensional array with nxt rows and one column for each independent (exogenous) variable, including the constant
- mean_y
float Mean of dependent variable
- std_y
float Standard deviation of dependent variable
- vm
array Variance covariance matrix (k+1 x k+1), all coefficients
- vm1
array Variance covariance matrix (k+2 x k+2), includes sig2
- sig2
float Sigma squared used in computations
- logll
float maximized log-likelihood (including constant terms)
- aic
float Akaike information criterion
- schwarz
float Schwarz criterion
- pr2
float Pseudo R squared (squared correlation between y and ypred)
- utu
float Sum of squared residuals
- std_err
array 1x(k+1) array of standard errors of the betas
- z_stat
listoftuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- name_y
str Name of dependent variable for use in output
- name_x
listofstrings Names of independent variables for use in output
- name_w
str Name of weights matrix for use in output
- name_ds
str Name of dataset for use in output
- title
str Name of the regression method used
- betas
Examples
>>> import numpy as np >>> import libpysal >>> import spreg >>> nat = libpysal.examples.load_example("NCOVR") >>> db = libpysal.io.open(nat.get_path("NAT.dbf"), "r") >>> nat_shp = libpysal.examples.get_path("NAT.shp") >>> w = libpysal.weights.Queen.from_shapefile(nat_shp) >>> w.transform = 'r' >>> name_y = ["HR70", "HR80", "HR90"] >>> y = np.array([db.by_col(name) for name in name_y]).T >>> name_x = ["RD70", "RD80", "RD90", "PS70", "PS80", "PS90"] >>> x = np.array([db.by_col(name) for name in name_x]).T >>> fe_error = spreg.Panel_FE_Error(y, x, w, name_y=name_y, name_x=name_x, name_ds="NAT") Warning: Assuming panel is in wide format, i.e. y[:, 0] refers to T0, y[:, 1] refers to T1, etc. Similarly, assuming x[:, 0:T] refers to T periods of k1, x[:, T+1:2T] refers to k2, etc. >>> np.around(fe_error.betas, decimals=4) array([[ 0.8698], [-2.9661], [ 0.1943]])
- __init__(y, x, w, epsilon=1e-07, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)[source]¶
Methods
__init__(y, x, w[, epsilon, vm, name_y, ...])Attributes
- property mean_y¶
- property sig2n¶
- property sig2n_k¶
- property std_y¶
- property utu¶
- property vm¶