spreg.OLS_Regimes¶
- class spreg.OLS_Regimes(y, x, regimes, w=None, robust=None, gwk=None, slx_lags=0, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, latex=False)[source]¶
Ordinary least squares with results and diagnostics.
- Parameters:
- y
numpy.ndarray
orpandas.Series
nx1 array for dependent variable
- x
numpy.ndarray
orpandas
object
Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- regimes
list
orpandas.Series
List of n values with the mapping of each observation to a regime. Assumed to be aligned with ‘x’.
- w
pysal
W
object
Spatial weights object (required if running spatial diagnostics)
- robust
str
If ‘white’, then a White consistent estimator of the variance-covariance matrix is given. If ‘hac’, then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- gwk
pysal
W
object
Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- slx_lags
integer
Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the SLX type. Note: WX is computed using the complete weights matrix
- sig2n_kbool
If True, then use n-k to estimate sigma^2. If False, use n.
- nonspat_diagbool
If True, then compute non-spatial diagnostics on the regression.
- spat_diagbool
If True, then compute Lagrange multiplier tests (requires w). Note: see moran for further tests.
- moranbool
If True, compute Moran’s I on the residuals. Note: requires spat_diag=True.
- white_testbool
If True, compute White’s specification robust test. (requires nonspat_diag=True)
- vmbool
If True, include variance-covariance matrix in summary results
- constant_regi: string, optional
Switcher controlling the constant term setup. It may take the following values:
‘one’: a vector of ones is appended to x and held constant across regimes
‘many’: a vector of ones is appended to x and considered different per regime (default)
- cols2regi
list
, ‘all’ Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If ‘all’ (default), all the variables vary by regime.
- regime_err_sepbool
If True, a separate regression is run for each regime.
- coresbool
Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y
str
Name of dependent variable for use in output
- name_x
list
of
strings
Names of independent variables for use in output
- name_w
str
Name of weights matrix for use in output
- name_gwk
str
Name of kernel weights matrix for use in output
- name_ds
str
Name of dataset for use in output
- name_regimes
str
Name of regime variable for use in the output
- latexbool
Specifies if summary is to be printed in latex format
- y
- Attributes:
- output
dataframe
regression results pandas dataframe
- summary
str
Summary of regression results and diagnostics (note: use in conjunction with the print command)
- betas
array
kx1 array of estimated coefficients
- u
array
nx1 array of residuals
- predy
array
nx1 array of predicted y values
- n
integer
Number of observations
- k
integer
Number of variables for which coefficients are estimated (including the constant) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- y
array
nx1 array for dependent variable
- x
array
Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- robust
str
Adjustment for robust standard errors Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- mean_y
float
Mean of dependent variable
- std_y
float
Standard deviation of dependent variable
- vm
array
Variance covariance matrix (kxk)
- r2
float
R squared Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- ar2
float
Adjusted R squared Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- utu
float
Sum of squared residuals
- sig2
float
Sigma squared used in computations Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- sig2ML
float
Sigma squared (maximum likelihood) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- f_stat
tuple
Statistic (float), p-value (float) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- logll
float
Log likelihood Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- aic
float
Akaike information criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- schwarz
float
Schwarz information criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- std_err
array
1xk array of standard errors of the betas Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- t_stat
list
of
tuples
t statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- mulColli
float
Multicollinearity condition number Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- jarque_bera
dictionary
‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- breusch_pagan
dictionary
‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- koenker_bassett: dictionary
‘kb’: Koenker-Bassett statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details).
- white
dictionary
‘wh’: White statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_error
tuple
Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_lag
tuple
Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- rlm_error
tuple
Robust lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- rlm_lag
tuple
Robust lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_sarma
tuple
Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- moran_res
tuple
Moran’s I for the residuals; tuple containing the triple (Moran’s I, standardized Moran’s I, p-value)
- name_y
str
Name of dependent variable for use in output
- name_x
list
of
strings
Names of independent variables for use in output
- name_w
str
Name of weights matrix for use in output
- name_gwk
str
Name of kernel weights matrix for use in output
- name_ds
str
Name of dataset for use in output
- name_regimes
str
Name of regime variable for use in the output
- title
str
Name of the regression method used. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- sig2n
float
Sigma squared (computed with n in the denominator)
- sig2n_k
float
Sigma squared (computed with n-k in the denominator)
- xtx
float
\(X'X\). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- xtxi
float
\((X'X)^{-1}\). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- regimes
list
List of n values with the mapping of each observation to a regime. Assumed to be aligned with ‘x’.
- constant_regi
str
Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
‘one’: a vector of ones is appended to x and held constant across regimes.
‘many’: a vector of ones is appended to x and considered different per regime.
- cols2regi
list
Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If ‘all’, all the variables vary by regime.
- regime_err_sep: boolean
If True, a separate regression is run for each regime.
- kr
int
Number of variables/columns to be “regimized” or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- kf
int
Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate.
- nr
int
Number of different regimes in the ‘regimes’ list.
- multi
dictionary
Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression.
- output
Examples
>>> import numpy as np >>> import libpysal >>> from spreg import OLS_Regimes
Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.
>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')
Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept.
>>> y_var = 'HR90' >>> y = db.by_col(y_var) >>> y = np.array(y)
Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.
>>> x_var = ['PS90','UE90'] >>> x = np.array([db.by_col(name) for name in x_var]).T
The different regimes in this data are given according to the North and South dummy (SOUTH).
>>> r_var = 'SOUTH' >>> regimes = db.by_col(r_var)
We can now run the regression and then have a summary of the output by typing: olsr.summary
>>> olsr = OLS_Regimes(y, x, regimes, nonspat_diag=False, name_y=y_var, name_x=['PS90','UE90'], name_regimes=r_var, name_ds='NAT') >>> print(olsr.summary) REGRESSION RESULTS ------------------ SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME 0 --------------------------------------------------------------- Data set : NAT Weights matrix : None Dependent Variable : 0_HR90 Number of Observations: 1673 Mean dependent var : 3.3416 Number of Variables : 3 S.D. dependent var : 4.6795 Degrees of Freedom : 1670 R-squared : 0.1271 Adjusted R-squared : 0.1260 ------------------------------------------------------------------------------------ Variable Coefficient Std.Error t-Statistic Probability ------------------------------------------------------------------------------------ 0_CONSTANT 0.39643 0.24816 1.59745 0.11035 0_PS90 0.65583 0.09663 6.78728 0.00000 0_UE90 0.48704 0.03629 13.42213 0.00000 ------------------------------------------------------------------------------------ Regimes variable: SOUTH SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION - REGIME 1 --------------------------------------------------------------- Data set : NAT Weights matrix : None Dependent Variable : 1_HR90 Number of Observations: 1412 Mean dependent var : 9.5493 Number of Variables : 3 S.D. dependent var : 7.0389 Degrees of Freedom : 1409 R-squared : 0.0661 Adjusted R-squared : 0.0647 ------------------------------------------------------------------------------------ Variable Coefficient Std.Error t-Statistic Probability ------------------------------------------------------------------------------------ 1_CONSTANT 5.59835 0.46895 11.93816 0.00000 1_PS90 1.16210 0.21667 5.36338 0.00000 1_UE90 0.53164 0.05946 8.94164 0.00000 ------------------------------------------------------------------------------------ Regimes variable: SOUTH ------------------------------------------------------------------------------------ GLOBAL DIAGNOSTICS REGIMES DIAGNOSTICS - CHOW TEST VARIABLE DF VALUE PROB CONSTANT 1 96.129 0.0000 PS90 1 4.554 0.0328 UE90 1 0.410 0.5220 Global test 3 680.960 0.0000 ================================ END OF REPORT =====================================
- __init__(y, x, regimes, w=None, robust=None, gwk=None, slx_lags=0, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, latex=False)[source]¶
Methods
__init__
(y, x, regimes[, w, robust, gwk, ...])Attributes
- property mean_y¶
- property sig2n¶
- property sig2n_k¶
- property std_y¶
- property utu¶
- property vm¶