spreg.OLS_Endog_Regimes¶
- class spreg.OLS_Endog_Regimes(y, x, w, n_clusters=None, quorum=-1, trace=True, name_y=None, name_x=None, **kwargs)[source]¶
Ordinary least squares with endogenous regimes. Based on the function skater_reg as shown in [AA24].
- Parameters:
- y
numpy.ndarray
orpandas.Series
nx1 array for dependent variable
- x
numpy.ndarray
orpandas
object
Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w
pysal
W
object
Spatial weights object (required if running spatial diagnostics)
- n_clusters
int
Number of clusters to be used in the endogenous regimes. If None (default), the number of clusters will be chosen according to the function utils.optim_k using a method adapted from Mojena (1977)’s Rule Two
- quorum
int
Minimum number of observations in a cluster to be considered Must be at least larger than the number of variables in x Default value is 30 or 10*k, whichever is larger.
- tracebool
Sets whether to store intermediate results of the clustering Hard-coded to True if n_clusters is None
- name_y
str
Name of dependent variable for use in output
- name_x
list
of
strings
Names of independent variables for use in output
- name_w
str
Name of weights matrix for use in output
- name_ds
str
Name of dataset for use in output
- latexbool
Specifies if summary is to be printed in latex format
- **kwargs
additional
keyword
arguments
depending
on
the
specific
model
- y
- Attributes:
- output
dataframe
regression results pandas dataframe
- summary
str
Summary of regression results and diagnostics (note: use in conjunction with the print command)
- betas
array
kx1 array of estimated coefficients
- u
array
nx1 array of residuals
- predy
array
nx1 array of predicted y values
- n
integer
Number of observations
- k
integer
Number of variables for which coefficients are estimated (including the constant) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- y
array
nx1 array for dependent variable
- x
array
Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- robust
str
Adjustment for robust standard errors Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- mean_y
float
Mean of dependent variable
- std_y
float
Standard deviation of dependent variable
- vm
array
Variance covariance matrix (kxk)
- r2
float
R squared Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- ar2
float
Adjusted R squared Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- utu
float
Sum of squared residuals
- sig2
float
Sigma squared used in computations Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- sig2ML
float
Sigma squared (maximum likelihood) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- f_stat
tuple
Statistic (float), p-value (float) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- logll
float
Log likelihood Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- aic
float
Akaike information criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- schwarz
float
Schwarz information criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- std_err
array
1xk array of standard errors of the betas Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- t_stat
list
of
tuples
t statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- mulColli
float
Multicollinearity condition number Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- jarque_bera
dictionary
‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- breusch_pagan
dictionary
‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- koenker_bassett: dictionary
‘kb’: Koenker-Bassett statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details).
- white
dictionary
‘wh’: White statistic (float); ‘pvalue’: p-value (float); ‘df’: degrees of freedom (int). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_error
tuple
Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_lag
tuple
Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- rlm_error
tuple
Robust lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- rlm_lag
tuple
Robust lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- lm_sarma
tuple
Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- moran_res
tuple
Moran’s I for the residuals; tuple containing the triple (Moran’s I, standardized Moran’s I, p-value)
- name_y
str
Name of dependent variable for use in output
- name_x
list
of
strings
Names of independent variables for use in output
- name_w
str
Name of weights matrix for use in output
- name_gwk
str
Name of kernel weights matrix for use in output
- name_ds
str
Name of dataset for use in output
- name_regimes
str
Name of regime variable for use in the output
- title
str
Name of the regression method used. Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- sig2n
float
Sigma squared (computed with n in the denominator)
- sig2n_k
float
Sigma squared (computed with n-k in the denominator)
- xtx
float
\(X'X\). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- xtxi
float
\((X'X)^{-1}\). Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details)
- regimes
list
List of n values with the mapping of each observation to a regime. Assumed to be aligned with ‘x’.
- constant_regi
str
Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
‘one’: a vector of ones is appended to x and held constant across regimes.
‘many’: a vector of ones is appended to x and considered different per regime.
- cols2regi
list
Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If ‘all’, all the variables vary by regime.
- regime_err_sep: boolean
If True, a separate regression is run for each regime.
- kr
int
Number of variables/columns to be “regimized” or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- kf
int
Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate.
- nr
int
Number of different regimes in the ‘regimes’ list.
- multi
dictionary
Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression.
- SSR
list
list with the total sum of squared residuals for the model considering all regimes for each of steps of number of regimes considered, starting with the solution with 2 regimes.
- clusters
int
Number of clusters considered in the endogenous regimes
- _trace
list
List of dictionaries with the clustering results for each number of clusters tested. Only available if n_clusters is None or trace=True.
- output
Examples
>>> import libpysal >>> import numpy as np >>> np.set_printoptions(legacy='1.25') #to avoid printing issues with numpy floats >>> import geopandas as gpd >>> from spreg import OLS_Endog_Regimes
Open data on Baltimore house sales price and characteristics in Baltimore from libpysal examples using geopandas.
>>> db = gpd.read_file(libpysal.examples.get_path('baltim.shp'))
We will create a weights matrix based on contiguity.
>>> w = libpysal.weights.Queen.from_dataframe(db, use_index=True) >>> w.transform = "r"
For this example, we will use the ‘PRICE’ column as the dependent variable and the ‘NROOM’, ‘AGE’, and ‘SQFT’ columns as independent variables. At this point, we will let the model choose the number of clusters.
>>> olsr = OLS_Endog_Regimes(y=db['PRICE'], x=db[['NROOM','AGE','SQFT']], w=w, name_w="baltim_q.gal")
The function print(olsr.summary) can be used to visualize the results of the regression.
Alternatively, we can check individual attributes: >>> olsr.betas array([[26.24209866],
[ 2.40329959], [-0.24183707], [ 0.45714794], [19.84817747], [ 5.12117483], [-0.65466516], [ 1.10034154]])
>>> olsr.SSR [68840.74965798721, 62741.55717492997] >>> olsr.clusters array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32)
We will now set the number of clusters to 2 and run the regression again.
>>> olsr = OLS_Endog_Regimes(y=db['PRICE'], x=db[['NROOM','AGE','SQFT']], w=w, n_clusters=2, name_w="baltim_q.gal")
The function print(olsr.summary) can be used to visualize the results of the regression.
Alternatively, we can check individual attributes as before: >>> olsr.betas array([[26.24209866],
[ 2.40329959], [-0.24183707], [ 0.45714794], [19.84817747], [ 5.12117483], [-0.65466516], [ 1.10034154]])
>>> olsr.SSR [68840.74965798721] >>> olsr.clusters array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32)
- __init__(y, x, w, n_clusters=None, quorum=-1, trace=True, name_y=None, name_x=None, **kwargs)[source]¶
Methods
__init__
(y, x, w[, n_clusters, quorum, ...])Attributes
- property mean_y¶
- property sig2n¶
- property sig2n_k¶
- property std_y¶
- property utu¶
- property vm¶