spreg.ML_Lag_Regimes¶
- class spreg.ML_Lag_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, slx_lags=0, slx_vars='all', regime_lag_sep=False, cores=False, spat_diag=True, spat_impacts='simple', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None, latex=False)[source]¶
- ML estimation of the spatial lag model with regimes (note no consistency checks, diagnostics or constants added) [Ans88]. - Parameters:
- ynumpy.ndarrayorpandas.Series
- nx1 array for dependent variable 
- xnumpy.ndarrayorpandasobject
- Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant 
- regimeslistorpandas.Series
- List of n values with the mapping of each observation to a regime. Assumed to be aligned with ‘x’. 
- constant_regi: string
- Switcher controlling the constant term setup. It may take the following values: - ‘one’: a vector of ones is appended to x and held constant across regimes 
- ‘many’: a vector of ones is appended to x and considered different per regime (default) 
 
- cols2regilist, ‘all’
- Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If ‘all’ (default), all the variables vary by regime. 
- wSparsematrix
- Spatial weights sparse matrix 
- methodstr
- if ‘full’, brute force calculation (full matrix expressions) if ‘ord’, Ord eigenvalue method if ‘LU’, LU sparse matrix decomposition 
- epsilonfloat
- tolerance criterion in mimimize_scalar function and inverse_product 
- slx_lagsinteger
- Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the Spatial Durbin type. 
- slx_varseither“all” (default)orlistofbooleanstoselectxvariables
- to be lagged 
- regime_lag_sep: boolean
- If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes. 
- spat_diagbool
- If True, then compute Common Factor Hypothesis test when applicable 
- spat_impactsstrorlist
- Include average direct impact (ADI), average indirect impact (AII),
- and average total impact (ATI) in summary results. Options are ‘simple’, ‘full’, ‘power’, ‘all’ or None. See sputils.spmultiplier for more information. 
 
- coresbool
- Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms. 
- vmbool
- if True, include variance-covariance matrix in summary results 
- name_ystr
- Name of dependent variable for use in output 
- name_xlistofstrings
- Names of independent variables for use in output 
- name_wstr
- Name of weights matrix for use in output 
- name_dsstr
- Name of dataset for use in output 
- name_regimesstr
- Name of regimes variable for use in output 
- latexbool
- Specifies if summary is to be printed in latex format 
 
- y
- Attributes:
- outputdataframe
- regression results pandas dataframe 
- summarystr
- Summary of regression results and diagnostics (note: use in conjunction with the print command) 
- betasarray
- (k+1)x1 array of estimated coefficients (rho first) 
- rhofloat
- estimate of spatial autoregressive coefficient Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- uarray
- nx1 array of residuals 
- predyarray
- nx1 array of predicted y values 
- ninteger
- Number of observations 
- kinteger
- Number of variables for which coefficients are estimated (including the constant, excluding the rho) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- yarray
- nx1 array for dependent variable 
- xarray
- Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- methodstr
- log Jacobian method. if ‘full’: brute force (full matrix computations) if ‘ord’, Ord eigenvalue method if ‘LU’, LU sparse matrix decomposition 
- cfh_testtuple
- Common Factor Hypothesis test; tuple contains the pair (statistic, p-value). Only when it applies (see specific documentation). 
- epsilonfloat
- tolerance criterion used in minimize_scalar function and inverse_product 
- mean_yfloat
- Mean of dependent variable 
- std_yfloat
- Standard deviation of dependent variable 
- vmarray
- Variance covariance matrix (k+1 x k+1), all coefficients 
- vm1array
- Variance covariance matrix (k+2 x k+2), includes sig2 Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- sig2float
- Sigma squared used in computations Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- logllfloat
- maximized log-likelihood (including constant terms) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- aicfloat
- Akaike information criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- schwarzfloat
- Schwarz criterion Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- predy_earray
- predicted values from reduced form 
- e_predarray
- prediction errors using reduced form predicted values 
- pr2float
- Pseudo R squared (squared correlation between y and ypred) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- pr2_efloat
- Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- std_errarray
- 1xk array of standard errors of the betas Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- z_statlistoftuples
- z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- sp_multipliers: dict
- Dictionary of spatial multipliers (if spat_impacts is not None) Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- name_ystr
- Name of dependent variable for use in output 
- name_xlistofstrings
- Names of independent variables for use in output 
- name_wstr
- Name of weights matrix for use in output 
- name_dsstr
- Name of dataset for use in output 
- name_regimesstr
- Name of regimes variable for use in output 
- titlestr
- Name of the regression method used Only available in dictionary ‘multi’ when multiple regressions (see ‘multi’ below for details) 
- regimeslist
- List of n values with the mapping of each observation to a regime. Assumed to be aligned with ‘x’. 
- constant_regi: [‘one’, ‘many’]
- Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values: - ‘one’: a vector of ones is appended to x and held constant across regimes 
- ‘many’: a vector of ones is appended to x and considered different per regime 
 
- cols2regilist, ‘all’
- Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If ‘all’, all the variables vary by regime. 
- regime_lag_sep: boolean
- If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes. 
- regime_err_sep: boolean
- always set to False - kept for compatibility with other regime models 
- krint
- Number of variables/columns to be “regimized” or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable) 
- kfint
- Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate 
- nrint
- Number of different regimes in the ‘regimes’ list 
- multidictionary
- Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression 
 
- output
 - Examples - Open data baltim.dbf using pysal and create the variables matrices and weights matrix. - >>> import numpy as np >>> import libpysal >>> from libpysal import examples >>> from libpysal.examples import load_example >>> from libpysal.weights import Queen >>> from spreg import ML_Lag_Regimes >>> import geopandas as gpd >>> np.set_printoptions(suppress=True) #prevent scientific format >>> baltimore = load_example('Baltimore') >>> db = libpysal.io.open(baltimore.get_path("baltim.dbf"),'r') >>> df = gpd.read_file(baltimore.get_path("baltim.shp")) >>> ds_name = "baltim.dbf" >>> y_name = "PRICE" >>> y = np.array(db.by_col(y_name)).T >>> y.shape = (len(y),1) >>> x_names = ["NROOM","AGE","SQFT"] >>> x = np.array([db.by_col(var) for var in x_names]).T >>> w = Queen.from_dataframe(df) >>> w_name = "baltim_q.gal" >>> w.transform = 'r' - Since in this example we are interested in checking whether the results vary by regimes, we use CITCOU to define whether the location is in the city or outside the city (in the county): - >>> regimes = db.by_col("CITCOU") - Now we can run the regression with all parameters: - >>> mllag = ML_Lag_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name,name_regimes="CITCOU") >>> np.around(mllag.betas, decimals=4) array([[-14.5158], [ 4.4923], [ -0.0336], [ 0.3541], [ -3.601 ], [ 3.8736], [ -0.1747], [ 0.8238], [ 0.525 ]]) >>> "{0:.6f}".format(mllag.rho) '0.524971' >>> "{0:.6f}".format(mllag.mean_y) '44.307180' >>> "{0:.6f}".format(mllag.std_y) '23.606077' >>> np.around(np.diag(mllag.vm1), decimals=4) array([ 48.6818, 2.4524, 0.0052, 0.0663, 71.4439, 3.2837, 0.0118, 0.0498, 0.0042, 409.1225]) >>> np.around(np.diag(mllag.vm), decimals=4) array([48.6818, 2.4524, 0.0052, 0.0663, 71.4439, 3.2837, 0.0118, 0.0498, 0.0042]) >>> "{0:.6f}".format(mllag.sig2) '204.827093' >>> "{0:.6f}".format(mllag.logll) '-867.086467' >>> "{0:.6f}".format(mllag.aic) '1752.172934' >>> "{0:.6f}".format(mllag.schwarz) '1782.339657' >>> mllag.title 'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)' - __init__(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, slx_lags=0, slx_vars='all', regime_lag_sep=False, cores=False, spat_diag=True, spat_impacts='simple', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None, latex=False)[source]¶
 - Methods - ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, ...)- __init__(y, x, regimes[, w, constant_regi, ...])- Attributes - ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, slx_lags, cores, cols2regi, method, epsilon, spat_diag, spat_impacts, vm, name_y, name_x, name_regimes, name_w, name_ds, latex)[source]¶
 - property mean_y¶
 - property sig2n¶
 - property sig2n_k¶
 - property std_y¶
 - property utu¶
 - property vm¶