Source code for spreg.panel_re

"""
Spatial Random Effects Panel model based on: :cite:`Elhorst2003`
"""

__author__ = "Wei Kang weikang9009@gmail.com, \
              Pedro Amaral pedroamaral@cedeplar.ufmg.br, \
              Pablo Estrada pabloestradace@gmail.com"

import numpy as np
import numpy.linalg as la
from scipy import sparse as sp
from scipy.sparse.linalg import splu as SuperLU
from .utils import RegressionPropsY, RegressionPropsVM, inverse_prod, set_warn
from .sputils import spdot, spfill_diagonal, spinv
from spreg.w_utils import symmetrize
from . import diagnostics as DIAG
from . import user_output as USER
from . import summary_output as SUMMARY

try:
    from scipy.optimize import minimize_scalar

    minimize_scalar_available = True
except ImportError:
    minimize_scalar_available = False
try:
    from scipy.optimize import minimize

    minimize_available = True
except ImportError:
    minimize_available = False

from .panel_utils import check_panel, demean_panel

__all__ = ["Panel_RE_Lag", "Panel_RE_Error"]


class BasePanel_RE_Lag(RegressionPropsY, RegressionPropsVM):

    """
    Base ML method for a random effects spatial lag model (note no consistency
    checks, diagnostics or constants added) :cite:`Elhorst2003`.

    Parameters
    ----------
    y         : array
                (n*t)x1 array for dependent variable
    x         : array
                Two dimensional array with n*t rows and one column for each
                independent (exogenous) variable
                (note: must already include constant term)
    w         : pysal W object
                Spatial weights matrix
    epsilon   : float
                tolerance criterion in mimimize_scalar function and
                inverse_product

    Attributes
    ----------
    betas        : array
                   (k+2)x1 array of estimated coefficients (rho and phi last)
    rho          : float
                   estimate of spatial autoregressive coefficient
    phi          : float
                   estimate of weight attached to the cross-sectional component
                   phi^2 = sig2 / (t*sig2_u + sig2)
    u            : array
                   (nxt)x1 array of residuals
    predy        : array
                   (nxt)x1 array of predicted y values
    n            : integer
                   Total number of observations
    t            : integer
                   Number of time periods
    k            : integer
                   Number of variables for which coefficients are estimated
                   (no constant, excluding the rho and phi)
    y            : array
                   (nxt)x1 array for dependent variable
    x            : array
                   Two dimensional array with nxt rows and one column for each
                   independent (exogenous) variable, no constant
    mean_y       : float
                   Mean of dependent variable
    std_y        : float
                   Standard deviation of dependent variable
    vm           : array
                   Variance covariance matrix (k+2 x k+2)
    vm1          : array
                   Variance covariance matrix (k+3 x k+3) includes sigma2
    sig2         : float
                   Sigma squared used in computations
    logll        : float
                   maximized log-likelihood (including constant terms)
    predy_e      : array
                   predicted values from reduced form
    e_pred       : array
                   prediction errors using reduced form predicted values
    """

    def __init__(self, bigy, bigx, w, epsilon=0.0000001):
        # set up main regression variables and spatial filters
        self.n = w.n
        self.t = bigy.shape[0] // self.n
        self.k = bigx.shape[1]
        self.epsilon = epsilon
        # Big W matrix
        W = w.full()[0]
        Wsp = w.sparse
        Wsp_nt = sp.kron(sp.identity(self.t), Wsp, format="csr")
        # Set up parameters
        converge = 1
        criteria = 0.0000001
        i = 0
        itermax = 100
        self.rho = 0.1
        self.phi = 0.1
        I = sp.identity(self.n)
        xtx = spdot(bigx.T, bigx)
        xtxi = la.inv(xtx)
        xty = spdot(bigx.T, bigy)
        b = spdot(xtxi, xty)

        # Iterative procedure
        while converge > criteria and i < itermax:
            phiold = self.phi
            res_phi = minimize_scalar(
                phi_c_loglik,
                0.1,
                bounds=(0.0, 1.0),
                args=(self.rho, b, bigy, bigx, self.n, self.t, Wsp_nt),
                method="bounded",
                options={"xatol": epsilon},
            )
            self.phi = res_phi.x[0][0]
            # Demeaned variables
            self.y = demean_panel(bigy, self.n, self.t, phi=self.phi)
            self.x = demean_panel(bigx, self.n, self.t, phi=self.phi)
            # lag dependent variable
            ylag = spdot(Wsp_nt, self.y)
            # b0, b1, e0 and e1
            xtx = spdot(self.x.T, self.x)
            xtxi = la.inv(xtx)
            xty = spdot(self.x.T, self.y)
            xtyl = spdot(self.x.T, ylag)
            b0 = spdot(xtxi, xty)
            b1 = spdot(xtxi, xtyl)
            e0 = self.y - spdot(self.x, b0)
            e1 = ylag - spdot(self.x, b1)
            res_rho = minimize_scalar(
                lag_c_loglik_sp,
                0.0,
                bounds=(-1.0, 1.0),
                args=(self.n, self.t, e0, e1, I, Wsp),
                method="bounded",
                options={"xatol": epsilon},
            )
            self.rho = res_rho.x[0][0]
            b = b0 - self.rho * b1
            i += 1
            converge = np.abs(phiold - self.phi)

        # compute full log-likelihood, including constants
        ln2pi = np.log(2.0 * np.pi)
        llik = -res_rho.fun - (self.n * self.t) / 2.0 * ln2pi - (self.n * self.t) / 2.0
        self.logll = llik[0][0]

        # b, residuals and predicted values
        self.betas = np.vstack((b, self.rho, self.phi))
        self.u = e0 - self.rho * e1
        self.predy = self.y - self.u
        xb = spdot(self.x, b)

        self.predy_e = inverse_prod(
            Wsp_nt, xb, self.rho, inv_method="power_exp", threshold=epsilon
        )
        self.e_pred = self.y - self.predy_e

        # residual variance
        self._cache = {}
        self.sig2 = spdot(self.u.T, self.u) / (self.n * self.t)

        # information matrix
        a = -self.rho * W
        spfill_diagonal(a, 1.0)
        ai = spinv(a)
        wai = spdot(W, ai)
        tr1 = wai.diagonal().sum()  # same for sparse and dense

        wai2 = spdot(wai, wai)
        tr2 = wai2.diagonal().sum()

        waiTwai = spdot(wai.T, wai)
        tr3 = waiTwai.diagonal().sum()

        wai_nt = sp.kron(sp.identity(self.t), wai, format="csr")
        wpredy = spdot(wai_nt, xb)
        xTwpy = spdot(self.x.T, wpredy)

        waiTwai_nt = sp.kron(sp.identity(self.t), waiTwai, format="csr")
        wTwpredy = spdot(waiTwai_nt, xb)
        wpyTwpy = spdot(xb.T, wTwpredy)

        # order of variables is beta, rho, sigma2
        v1 = np.vstack((xtx / self.sig2, xTwpy.T / self.sig2, np.zeros((2, self.k))))
        v2 = np.vstack(
            (
                xTwpy / self.sig2,
                self.t * (tr2 + tr3) + wpyTwpy / self.sig2,
                -tr1 / self.sig2,
                self.t * tr1 / self.sig2,
            )
        )
        v3 = np.vstack(
            (
                np.zeros((self.k, 1)),
                -tr1 / self.sig2,
                self.n * (1 + 1 / self.phi ** 2),
                -self.n / self.sig2,
            )
        )
        v4 = np.vstack(
            (
                np.zeros((self.k, 1)),
                self.t * tr1 / self.sig2,
                -self.n / self.sig2 ** 2,
                self.n * self.t / (2.0 * self.sig2 ** 2),
            )
        )

        v = np.hstack((v1, v2, v3, v4))

        self.vm1 = la.inv(v)  # vm1 includes variance for sigma2
        self.vm = self.vm1[:-1, :-1]  # vm is for coefficients and phi
        self.varb = la.inv(np.hstack((v1[:-2], v2[:-2])))
        self.n = self.n * self.t


[docs]class Panel_RE_Lag(BasePanel_RE_Lag): """ ML estimation of the random effects spatial lag model with all results and diagnostics :cite:`Elhorst2003`. Parameters ---------- y : array nxt or (nxt)x1 array for dependent variable x : array nx(txk) or (nxt)xk array for independent (exogenous) variables, excluding the constant w : pysal W object Spatial weights object epsilon : float tolerance criterion in mimimize_scalar function and inverse_product vm : boolean if True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- betas : array (k+2)x1 array of estimated coefficients (rho and phi last) rho : float estimate of spatial autoregressive coefficient phi : float estimate of weight attached to the cross-sectional component phi^2 = sig2 / (t*sig2_u + sig2) u : array (nxt)x1 array of residuals predy : array (nxt)x1 array of predicted y values n : integer Total number of observations t : integer Number of time periods k : integer Number of variables for which coefficients are estimated (excluding the phi) y : array (nxt)x1 array for dependent variable x : array Two dimensional array with nxt rows and one column for each independent (exogenous) variable mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (k+2 x k+2) vm1 : array Variance covariance matrix (k+3 x k+3) includes sigma2 sig2 : float Sigma squared used in computations logll : float maximized log-likelihood (including constant terms) predy_e : array predicted values from reduced form e_pred : array prediction errors using reduced form predicted values pr2 : float Pseudo R squared (squared correlation between y and ypred) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) utu : float Sum of squared residuals std_err : array 1x(k+1) array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- >>> import numpy as np >>> import pandas as pd >>> import libpysal >>> import spreg >>> nat = libpysal.examples.load_example("NCOVR") >>> db = libpysal.io.open(nat.get_path("NAT.dbf"), "r") >>> nat_shp = libpysal.examples.get_path("NAT.shp") >>> w_full = libpysal.weights.Queen.from_shapefile(nat_shp) >>> name_y = ["HR70", "HR80", "HR90"] >>> y_full = np.array([db.by_col(name) for name in name_y]).T >>> name_x = ["RD70", "RD80", "RD90", "PS70", "PS80", "PS90"] >>> x_full = np.array([db.by_col(name) for name in name_x]).T >>> name_c = ["STATE_NAME", "FIPSNO"] >>> df_counties = pd.DataFrame([db.by_col(name) for name in name_c], index=name_c).T >>> filter_states = ["Kansas", "Missouri", "Oklahoma", "Arkansas"] >>> filter_counties = df_counties[df_counties["STATE_NAME"].isin(filter_states)]["FIPSNO"].values >>> counties = np.array(db.by_col("FIPSNO")) >>> subid = np.where(np.isin(counties, filter_counties))[0] >>> w = w_subset(w_full, subid) >>> w.transform = 'r' >>> y = y_full[subid, ] >>> x = x_full[subid, ] >>> re_lag = spreg.Panel_RE_Lag(y, x, w, name_y=name_y, name_x=name_x, name_ds="NAT") Warning: Assuming panel is in wide format, i.e. y[:, 0] refers to T0, y[:, 1] refers to T1, etc. Similarly, assuming x[:, 0:T] refers to T periods of k1, x[:, T+1:2T] refers to k2, etc. np.around(re_lag.betas, decimals=4) array([[4.44421994], [2.52821717], [2.24768846], [0.25846846], [0.68426639]]) """
[docs] def __init__( self, y, x, w, epsilon=0.0000001, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, ): n_rows = USER.check_arrays(y, x) bigy, bigx, name_y, name_x, warn = check_panel(y, x, w, name_y, name_x) set_warn(self, warn) bigx, name_x, warn = USER.check_constant(bigx, name_x) set_warn(self, warn) USER.check_weights(w, bigy, w_required=True, time=True) BasePanel_RE_Lag.__init__(self, bigy, bigx, w, epsilon=epsilon) # increase by 1 to have correct aic and sc, include rho in count self.k += 1 self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG PANEL" + " - RANDOM EFFECTS" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, bigx, constant=False) name_ylag = USER.set_name_yend_sp(self.name_y) self.name_x.append(name_ylag) # rho changed to last position self.name_x.append("phi") # error variance parameter self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.Panel_FE_Lag(reg=self, w=w, vm=vm)
class BasePanel_RE_Error(RegressionPropsY, RegressionPropsVM): """ Base ML method for a random effects spatial error model (note no consistency checks, diagnostics or constants added) :cite:`Elhorst2003`. Parameters ---------- y : array (n*t)x1 array for dependent variable x : array Two dimensional array with n*t rows and one column for each independent (exogenous) variable (note: must already include constant term) w : pysal W object Spatial weights matrix epsilon : float tolerance criterion in mimimize_scalar function and inverse_product Attributes ---------- betas : array kx1 array of estimated coefficients lam : float estimate of spatial autoregressive coefficient sig2_u : float Sigma squared for random effects u : array (nxt)x1 array of residuals predy : array (nxt)x1 array of predicted y values n : integer Total number of observations t : integer Number of time periods k : integer Number of variables for which coefficients are estimated (no constant, excluding the lambda) y : array (nxt)x1 array for dependent variable x : array Two dimensional array with nxt rows and one column for each independent (exogenous) variable, no constant mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (k+2 x k+2) vm1 : array Variance covariance matrix (k+3 x k+3) includes sigma2 sig2 : float Sigma squared used in computations logll : float maximized log-likelihood (including constant terms) """ def __init__(self, y, x, w, epsilon=0.0000001): # set up main regression variables and spatial filters self.n = w.n self.t = y.shape[0] // self.n self.k = x.shape[1] self.epsilon = epsilon # Demeaned variables self.y = y self.x = x # Big W matrix W = w.full()[0] Wsp = w.sparse Wsp_nt = sp.kron(sp.identity(self.t), Wsp, format="csr") # lag dependent variable ylag = spdot(Wsp_nt, self.y) xlag = spdot(Wsp_nt, self.x) # concentrated Log Likelihood I = np.identity(self.n) if w.asymmetry(intrinsic=False) == []: ww = symmetrize(w) WW = np.array(ww.todense()) evals, evecs = la.eigh(WW) W = WW else: # need dense here evals, evecs = la.eig(W) one = np.ones((self.t, 1)) J = (1 / self.t) * spdot(one, one.T) Q = sp.kron(J, I, format="csr") y_mean = spdot(Q, self.y) x_mean = spdot(Q, self.x) res = minimize( err_c_loglik_ord, (0.0, 0.1), bounds=((-1.0, 1.0), (0.0, 10000.0)), method="L-BFGS-B", args=( evals, evecs, self.n, self.t, self.y, self.x, ylag, xlag, y_mean, x_mean, I, Wsp, ), ) self.lam, self.phi = res.x # compute full log-likelihood ln2pi = np.log(2.0 * np.pi) self.logll = ( -res.fun - (self.n * self.t) / 2.0 * ln2pi - (self.n * self.t) / 2.0 ) # b, residuals and predicted values cvals = self.t * self.phi ** 2 + 1 / (1 - self.lam * evals) ** 2 P = spdot(np.diag(cvals ** (-0.5)), evecs.T) pr = P - (I - self.lam * W) pr_nt = sp.kron(sp.identity(self.t), pr, format="csr") yrand = self.y + spdot(pr_nt, y_mean) xrand = self.x + spdot(pr_nt, x_mean) ys = yrand - self.lam * ylag xs = xrand - self.lam * xlag xsxs = spdot(xs.T, xs) xsxsi = la.inv(xsxs) xsys = spdot(xs.T, ys) b = spdot(xsxsi, xsys) self.u = self.y - spdot(self.x, b) self.predy = self.y - self.u # residual variance self.e_filtered = ys - spdot(xs, b) self.sig2 = spdot(self.e_filtered.T, self.e_filtered) / (self.n * self.t) # variance-covariance matrix betas varb = self.sig2 * xsxsi # variance of random effects self.sig2_u = self.phi ** 2 * self.sig2 self.betas = np.vstack((b, self.lam, self.sig2_u)) # variance-covariance matrix lambda, sigma a = -self.lam * W spfill_diagonal(a, 1.0) aTai = la.inv(spdot(a.T, a)) wa_aw = spdot(W.T, a) + spdot(a.T, W) gamma = spdot(wa_aw, aTai) vi = la.inv(self.t * self.phi * I + aTai) sigma = spdot(vi, aTai) tr1 = gamma.diagonal().sum() tr2 = vi.diagonal().sum() tr3 = sigma.diagonal().sum() sigma_gamma = spdot(sigma, gamma) tr4 = sigma_gamma.diagonal().sum() sigma_vi = spdot(sigma, vi) tr5 = sigma_vi.diagonal().sum() sigma_gamma_vi = spdot(sigma_gamma, vi) tr6 = sigma_gamma_vi.diagonal().sum() sigma_gamma_sigma = spdot(sigma_gamma, sigma) tr7 = sigma_gamma_sigma.diagonal().sum() v1 = np.vstack( ( (self.t - 1) / 2 * tr1 ** 2 + 1 / 2 * tr4 ** 2, self.t / (2 * self.sig2) * tr6, (self.t - 1) / (2 * self.sig2) * tr1 + 1 / (2 * self.sig2) * tr7, ) ) v2 = np.vstack( ( self.t / (2 * self.sig2) * tr6, self.t ** 2 / (2.0 * self.sig2 ** 2) * tr2 ** 2, self.t / (2.0 * self.sig2 ** 2) * tr5, ) ) v3 = np.vstack( ( (self.t - 1) / (2 * self.sig2) * tr1 + 1 / (2 * self.sig2) * tr7, self.t / (2.0 * self.sig2 ** 2) * tr5, 1 / (2.0 * self.sig2 ** 2) * ((self.t - 1) * self.n + tr3 ** 2), ) ) v = np.hstack((v1, v2, v3)) vm1 = np.linalg.inv(v) # create variance matrix for beta, lambda vv = np.hstack((varb, np.zeros((self.k, 2)))) vv1 = np.hstack((np.zeros((2, self.k)), vm1[:2, :2])) self.vm = np.vstack((vv, vv1)) self.varb = varb self.n = self.n * self.t
[docs]class Panel_RE_Error(BasePanel_RE_Error): """ ML estimation of the random effects spatial error model with all results and diagnostics :cite:`Elhorst2003`. Parameters ---------- y : array nxt or (nxt)x1 array for dependent variable x : array nx(txk) or (nxt)xk array for independent (exogenous) variables, no constant w : pysal W object Spatial weights object epsilon : float tolerance criterion in mimimize_scalar function and inverse_product vm : boolean if True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- betas : array kx1 array of estimated coefficients lam : float estimate of spatial autoregressive coefficient sig2_u : float Sigma squared for random effects u : array (nxt)x1 array of residuals e_filtered : array (nxt)x1 array of spatially filtered residuals predy : array (nxt)x1 array of predicted y values n : integer Total number of observations t : integer Number of time periods k : integer Number of variables for which coefficients are estimated (no constant, excluding the lambda) y : array (nxt)x1 array for dependent variable x : array Two dimensional array with nxt rows and one column for each independent (exogenous) variable, including the constant mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (k+2 x k+2), all coefficients vm1 : array Variance covariance matrix (k+3 x k+3), includes sig2 sig2 : float Sigma squared used in computations logll : float maximized log-likelihood (including constant terms) aic : float Akaike information criterion schwarz : float Schwarz criterion pr2 : float Pseudo R squared (squared correlation between y and ypred) utu : float Sum of squared residuals std_err : array 1x(k+1) array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- >>> import numpy as np >>> import pandas as pd >>> import libpysal >>> import spreg >>> nat = libpysal.examples.load_example("NCOVR") >>> db = libpysal.io.open(nat.get_path("NAT.dbf"), "r") >>> nat_shp = libpysal.examples.get_path("NAT.shp") >>> w_full = libpysal.weights.Queen.from_shapefile(nat_shp) >>> name_y = ["HR70", "HR80", "HR90"] >>> y_full = np.array([db.by_col(name) for name in name_y]).T >>> name_x = ["RD70", "RD80", "RD90", "PS70", "PS80", "PS90"] >>> x_full = np.array([db.by_col(name) for name in name_x]).T >>> name_c = ["STATE_NAME", "FIPSNO"] >>> df_counties = pd.DataFrame([db.by_col(name) for name in name_c], index=name_c).T >>> filter_states = ["Kansas", "Missouri", "Oklahoma", "Arkansas"] >>> filter_counties = df_counties[df_counties["STATE_NAME"].isin(filter_states)]["FIPSNO"].values >>> counties = np.array(db.by_col("FIPSNO")) >>> subid = np.where(np.isin(counties, filter_counties))[0] >>> w = w_subset(w_full, subid) >>> w.transform = 'r' >>> y = y_full[subid, ] >>> x = x_full[subid, ] >>> re_error = spreg.Panel_RE_Error(y, x, w, name_y=name_y, name_x=name_x, name_ds="NAT") Warning: Assuming panel is in wide format, i.e. y[:, 0] refers to T0, y[:, 1] refers to T1, etc. Similarly, assuming x[:, 0:T] refers to T periods of k1, x[:, T+1:2T] refers to k2, etc. >>> np.around(re_error.betas, decimals=4) array([[5.87893756], [3.23269025], [2.62996804], [0.34042682], [4.9782446]]) """
[docs] def __init__( self, y, x, w, epsilon=0.0000001, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, ): n_rows = USER.check_arrays(y, x) bigy, bigx, name_y, name_x, warn = check_panel(y, x, w, name_y, name_x) set_warn(self, warn) bigx, name_x, warn = USER.check_constant(bigx, name_x) set_warn(self, warn) USER.check_weights(w, bigy, w_required=True, time=True) BasePanel_RE_Error.__init__(self, bigy, bigx, w, epsilon=epsilon) self.title = "MAXIMUM LIKELIHOOD SPATIAL ERROR PANEL" + " - RANDOM EFFECTS" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, bigx, constant=False) self.name_x.append("lambda") self.name_x.append("sig2_u") # error variance parameter self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.Panel_FE_Error(reg=self, w=w, vm=vm)
def lag_c_loglik_sp(rho, n, t, e0, e1, I, Wsp): # concentrated log-lik for lag model, sparse algebra if isinstance(rho, np.ndarray): if rho.shape == (1, 1): rho = rho[0][0] er = e0 - rho * e1 sig2 = spdot(er.T, er) / (n * t) nlsig2 = (n * t / 2.0) * np.log(sig2) a = I - rho * Wsp LU = SuperLU(a.tocsc()) jacob = t * np.sum(np.log(np.abs(LU.U.diagonal()))) clike = nlsig2 - jacob return clike def phi_c_loglik(phi, rho, beta, bigy, bigx, n, t, W_nt): # Demeaned variables y = demean_panel(bigy, n, t, phi=phi) x = demean_panel(bigx, n, t, phi=phi) # Lag dependent variable ylag = spdot(W_nt, y) er = y - rho * ylag - spdot(x, beta) sig2 = spdot(er.T, er) nlsig2 = (n * t / 2.0) * np.log(sig2) nphi2 = (n / 2.0) * np.log(phi ** 2) clike = nlsig2 - nphi2 return clike def err_c_loglik_ord( lam_phi, evals, evecs, n, t, bigy, bigx, ylag, xlag, y_mean, x_mean, I, Wsp ): # concentrated log-lik for error model, no constants, eigenvalues lam, phi = lam_phi cvals = t * phi ** 2 + 1 / (1 - lam * evals) ** 2 P = spdot(np.diag(cvals ** (-0.5)), evecs.T) pr = P - (I - lam * Wsp) pr_nt = sp.kron(sp.identity(t), pr, format="csr") # Term 1 yrand = bigy + spdot(pr_nt, y_mean) xrand = bigx + spdot(pr_nt, x_mean) ys = yrand - lam * ylag xs = xrand - lam * xlag ysys = np.dot(ys.T, ys) xsxs = np.dot(xs.T, xs) xsxsi = la.inv(xsxs) xsys = np.dot(xs.T, ys) x1 = np.dot(xsxsi, xsys) x2 = np.dot(xsys.T, x1) ee = ysys - x2 sig2 = ee[0][0] nlsig2 = (n * t / 2.0) * np.log(sig2) # Term 2 revals = t * phi ** 2 * (1 - lam * evals) ** 2 phi_jacob = 1 / 2 * np.log(1 + revals).sum() # Term 3 jacob = t * np.log(1 - lam * evals).sum() if isinstance(jacob, complex): jacob = jacob.real # this is the negative of the concentrated log lik for minimization clik = nlsig2 + phi_jacob - jacob return clik