Source code for spreg.error_sp

"""
Spatial Error Models module
"""

__author__ = "Luc Anselin luc.anselin@asu.edu, \
        Daniel Arribas-Bel darribas@asu.edu, \
        Pedro V. Amaral pedro.amaral@asu.edu"

import numpy as np
from numpy import linalg as la
from . import ols as OLS
from .utils import set_endog, sp_att, optim_moments, get_spFilter, get_lags, spdot, RegressionPropsY, set_warn
from . import twosls as TSLS
from . import user_output as USER
import pandas as pd
from .output import output, _spat_pseudo_r2
from .error_sp_het import GM_Error_Het, GM_Endog_Error_Het, GM_Combo_Het
from .error_sp_hom import GM_Error_Hom, GM_Endog_Error_Hom, GM_Combo_Hom


__all__ = ["GMM_Error", "GM_Error", "GM_Endog_Error", "GM_Combo"]


class BaseGM_Error(RegressionPropsY):

    """
    GMM method for a spatial error model (note: no consistency checks
    diagnostics or constant added); based on Kelejian and Prucha
    (1998, 1999) :cite:`Kelejian1998` :cite:`Kelejian1999`.

    Parameters
    ----------
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, excluding the constant
    w            : Sparse matrix
                   Spatial weights sparse matrix

    Attributes
    ----------
    betas        : array
                   kx1 array of estimated coefficients
    u            : array
                   nx1 array of residuals
    e_filtered   : array
                   nx1 array of spatially filtered residuals
    predy        : array
                   nx1 array of predicted y values
    n            : integer
                   Number of observations
    k            : integer
                   Number of variables for which coefficients are estimated
                   (including the constant)
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, including the constant
    mean_y       : float
                   Mean of dependent variable
    std_y        : float
                   Standard deviation of dependent variable
    vm           : array
                   Variance covariance matrix (kxk)
    sig2         : float
                   Sigma squared used in computations

    Examples
    --------

    >>> import libpysal
    >>> import numpy as np
    >>> import spreg
    >>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')
    >>> y = np.array([dbf.by_col('HOVAL')]).T
    >>> x = np.array([dbf.by_col('INC'), dbf.by_col('CRIME')]).T
    >>> x = np.hstack((np.ones(y.shape),x))
    >>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read()
    >>> w.transform='r'
    >>> model = spreg.error_sp.BaseGM_Error(y, x, w=w.sparse)
    >>> np.around(model.betas, decimals=4)
    array([[47.6946],
           [ 0.7105],
           [-0.5505],
           [ 0.3257]])
    """

    def __init__(self, y, x, w):

        # 1a. OLS --> \tilde{betas}
        ols = OLS.BaseOLS(y=y, x=x)
        self.n, self.k = ols.x.shape
        self.x = ols.x
        self.y = ols.y

        # 1b. GMM --> \tilde{\lambda1}
        moments = _momentsGM_Error(w, ols.u)
        lambda1 = optim_moments(moments)

        # 2a. OLS -->\hat{betas}
        xs = get_spFilter(w, lambda1, self.x)
        ys = get_spFilter(w, lambda1, self.y)
        ols2 = OLS.BaseOLS(y=ys, x=xs)

        # Output
        self.predy = spdot(self.x, ols2.betas)
        self.u = y - self.predy
        self.betas = np.vstack((ols2.betas, np.array([[lambda1]])))
        self.sig2 = ols2.sig2n
        self.e_filtered = self.u - lambda1 * w * self.u

        self.vm = self.sig2 * ols2.xtxi
        se_betas = np.sqrt(self.vm.diagonal())
        self._cache = {}


[docs]class GM_Error(BaseGM_Error): """ GMM method for a spatial error model, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) :cite:`Kelejian1998` :cite:`Kelejian1999`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant w : pysal W object Spatial weights object (always needed) slx_lags : integer Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the SDEM type. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output latex : boolean Specifies if summary is to be printed in latex format Attributes ---------- output : dataframe regression results pandas dataframe summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable pr2 : float Pseudo R squared (squared correlation between y and ypred) vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import libpysal >>> import numpy as np >>> from spreg import GM_Error Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array([dbf.by_col('HOVAL')]).T Extract CRIME (crime) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> names_to_extract = ['INC', 'CRIME'] >>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use ``columbus.gal``, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command. >>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read() Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform='r' We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> model = GM_Error(y, x, w=w, name_y='hoval', name_x=['income', 'crime'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). >>> print(model.name_x) ['CONSTANT', 'income', 'crime', 'lambda'] >>> np.around(model.betas, decimals=4) array([[47.6946], [ 0.7105], [-0.5505], [ 0.3257]]) >>> np.around(model.std_err, decimals=4) array([12.412 , 0.5044, 0.1785]) >>> np.around(model.z_stat, decimals=6) #doctest: +SKIP array([[ 3.84261100e+00, 1.22000000e-04], [ 1.40839200e+00, 1.59015000e-01], [ -3.08424700e+00, 2.04100000e-03]]) >>> round(model.sig2,4) 198.5596 """
[docs] def __init__( self, y, x, w, slx_lags=0, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, latex=False ): n = USER.check_arrays(y, x) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant, name_x, warn = USER.check_constant(x, name_x) set_warn(self, warn) self.title = "GM SPATIALLY WEIGHTED LEAST SQUARES" if slx_lags >0: lag_x = get_lags(w, x_constant[:, 1:], slx_lags) x_constant = np.hstack((x_constant, lag_x)) name_x += USER.set_name_spatial_lags(name_x, slx_lags) self.title += " WITH SLX (SDEM)" BaseGM_Error.__init__(self, y=y, x=x_constant, w=w.sparse) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_x.append("lambda") self.name_w = USER.set_name_w(name_w, w) self.output = pd.DataFrame(self.name_x, columns=['var_names']) self.output['var_type'] = ['x'] * (len(self.name_x) - 1) + ['lambda'] self.output['regime'], self.output['equation'] = (0, 0) output(reg=self, vm=vm, robust=False, other_end=False, latex=latex)
class BaseGM_Endog_Error(RegressionPropsY): """ GMM method for a spatial error model with endogenous variables (note: no consistency checks, diagnostics or constant added); based on Kelejian and Prucha (1998, 1999) :cite:`Kelejian1998` :cite:`Kelejian1999`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : Sparse matrix Spatial weights sparse matrix Attributes ---------- betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable z : array nxk array of variables (combination of x and yend) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations Examples -------- >>> import libpysal >>> import numpy as np >>> import spreg >>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array([dbf.by_col('CRIME')]).T >>> x = np.array([dbf.by_col('INC')]).T >>> x = np.hstack((np.ones(y.shape),x)) >>> yend = np.array([dbf.by_col('HOVAL')]).T >>> q = np.array([dbf.by_col('DISCBD')]).T >>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read() >>> w.transform='r' >>> model = spreg.error_sp.BaseGM_Endog_Error(y, x, yend, q, w=w.sparse) >>> np.around(model.betas, decimals=4) array([[82.5723], [ 0.581 ], [-1.4481], [ 0.3499]]) """ def __init__(self, y, x, yend, q, w): # 1a. TSLS --> \tilde{betas} tsls = TSLS.BaseTSLS(y=y, x=x, yend=yend, q=q) self.n, self.k = tsls.z.shape self.x = tsls.x self.y = tsls.y self.yend, self.z = tsls.yend, tsls.z # 1b. GMM --> \tilde{\lambda1} moments = _momentsGM_Error(w, tsls.u) lambda1 = optim_moments(moments) # 2a. 2SLS -->\hat{betas} xs = get_spFilter(w, lambda1, self.x) ys = get_spFilter(w, lambda1, self.y) yend_s = get_spFilter(w, lambda1, self.yend) tsls2 = TSLS.BaseTSLS(ys, xs, yend_s, h=tsls.h) # Output self.betas = np.vstack((tsls2.betas, np.array([[lambda1]]))) self.predy = spdot(tsls.z, tsls2.betas) self.u = y - self.predy self.sig2 = float(np.dot(tsls2.u.T, tsls2.u)) / self.n self.e_filtered = self.u - lambda1 * w * self.u self.vm = self.sig2 * tsls2.varb self._cache = {}
[docs]class GM_Endog_Error(BaseGM_Endog_Error): """ GMM method for a spatial error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) :cite:`Kelejian1998` :cite:`Kelejian1999`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object (always needed) slx_lags : integer Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the SDEM type. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output latex : boolean Specifies if summary is to be printed in latex format Attributes ---------- output : dataframe regression results pandas dataframe summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable z : array nxk array of variables (combination of x and yend) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import libpysal >>> import numpy as np Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> dbf = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r') Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array([dbf.by_col('CRIME')]).T Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> x = np.array([dbf.by_col('INC')]).T In this case we consider HOVAL (home value) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x). >>> yend = np.array([dbf.by_col('HOVAL')]).T Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for HOVAL. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'. >>> q = np.array([dbf.by_col('DISCBD')]).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use ``columbus.gal``, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command. >>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read() Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform='r' We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> from spreg import GM_Endog_Error >>> model = GM_Endog_Error(y, x, yend, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the endogenous variables included. >>> print(model.name_z) ['CONSTANT', 'inc', 'hoval', 'lambda'] >>> np.around(model.betas, decimals=4) array([[82.5723], [ 0.581 ], [-1.4481], [ 0.3499]]) >>> np.around(model.std_err, decimals=4) array([16.1382, 1.3545, 0.7862]) """
[docs] def __init__( self, y, x, yend, q, w, slx_lags=0, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, latex=False, ): n = USER.check_arrays(y, x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant, name_x, warn = USER.check_constant(x, name_x) set_warn(self, warn) self.title = "GM SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" if slx_lags >0: lag_x = get_lags(w, x_constant[:, 1:], slx_lags) x_constant = np.hstack((x_constant, lag_x)) name_x += USER.set_name_spatial_lags(name_x, slx_lags) self.title += " WITH SLX (SDEM)" BaseGM_Endog_Error.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend, q=q) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append("lambda") self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) self.output = pd.DataFrame(self.name_z, columns=['var_names']) self.output['var_type'] = ['x'] * len(self.name_x) + ['yend'] * len(self.name_yend) + ['lambda'] self.output['regime'], self.output['equation'] = (0, 0) output(reg=self, vm=vm, robust=False, other_end=False, latex=latex)
[docs]class GM_Combo(BaseGM_Endog_Error): """ GMM method for a spatial lag and error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) :cite:`Kelejian1998` :cite:`Kelejian1999`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object (always needed) w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. slx_lags : integer Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the General Nesting Spatial Model (GNSM) type. lag_q : boolean If True, then include spatial lags of the additional instruments (q) vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output latex : boolean Specifies if summary is to be printed in latex format Attributes ---------- output : dataframe regression results pandas dataframe summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals e_pred : array nx1 array of residuals (using reduced form) predy : array nx1 array of predicted y values predy_e : array nx1 array of predicted y values (using reduced form) n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable z : array nxk array of variables (combination of x and yend) mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) sig2 : float Sigma squared used in computations (based on filtered residuals) std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal >>> from spreg import GM_Combo Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r') Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Combo(y, X, w=w, name_y='crime', name_x=['income'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the spatial lag of the dependent variable. We can check the betas: >>> print(reg.name_z) ['CONSTANT', 'income', 'W_crime', 'lambda'] >>> print(np.around(np.hstack((reg.betas[:-1],np.sqrt(reg.vm.diagonal()).reshape(3,1))),3)) [[39.059 11.86 ] [-1.404 0.391] [ 0.467 0.2 ]] And lambda: >>> print('lambda: ', np.around(reg.betas[-1], 3)) lambda: [-0.048] This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include HOVAL (home value) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables: >>> yd = [] >>> yd.append(db.by_col("HOVAL")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T And then we can run and explore the model analogously to the previous combo: >>> reg = GM_Combo(y, X, yd, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus') >>> print(reg.name_z) ['CONSTANT', 'inc', 'hoval', 'W_crime', 'lambda'] >>> names = np.array(reg.name_z).reshape(5,1) >>> print(np.hstack((names[0:4,:], np.around(np.hstack((reg.betas[:-1], np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)))) [['CONSTANT' '50.0944' '14.3593'] ['inc' '-0.2552' '0.5667'] ['hoval' '-0.6885' '0.3029'] ['W_crime' '0.4375' '0.2314']] >>> print('lambda: ', np.around(reg.betas[-1], 3)) lambda: [0.254] """
[docs] def __init__( self, y, x, yend=None, q=None, w=None, w_lags=1, slx_lags=0, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, latex=False, ): n = USER.check_arrays(y, x, yend, q) y = USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant, name_x, warn = USER.check_constant(x, name_x) set_warn(self, warn) if slx_lags == 0: yend2, q2 = set_endog(y, x_constant[:, 1:], w, yend, q, w_lags, lag_q) else: yend2, q2, wx = set_endog(y, x_constant[:, 1:], w, yend, q, w_lags, lag_q, slx_lags) x_constant = np.hstack((x_constant, wx)) BaseGM_Endog_Error.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2) self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = sp_att( w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho ) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED 2SLS - GM-COMBO MODEL" if slx_lags > 0: name_x += USER.set_name_spatial_lags(name_x, slx_lags) self.title += " WITH SLX (GNSM)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x_constant) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append("lambda") self.name_q = USER.set_name_q(name_q, q) self.name_q.extend(USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) self.output = pd.DataFrame(self.name_z, columns=['var_names']) self.output['var_type'] = ['x'] * len(self.name_x) + ['yend'] * (len(self.name_yend) - 1) + ['rho', 'lambda'] self.output['regime'], self.output['equation'] = (0, 0) self.other_top = _spat_pseudo_r2(self) output(reg=self, vm=vm, robust=False, other_end=False, latex=latex)
class GMM_Error(GM_Error, GM_Endog_Error, GM_Combo, GM_Error_Het, GM_Endog_Error_Het, GM_Combo_Het, GM_Error_Hom, GM_Endog_Error_Hom, GM_Combo_Hom): """ Wrapper function to call any of the GMM methods for a spatial error model available in spreg Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant w : pysal W object Spatial weights object (always needed) yend : array Two dimensional array with n rows and one column for each endogenous variable (if any) q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (if any) (note: this should not contain any variables from x) estimator : string Choice of estimator to be used. Options are: 'het', which is robust to heteroskedasticity, 'hom', which assumes homoskedasticity, and 'kp98', which does not provide inference on the spatial parameter for the error term. add_wy : boolean If True, then a spatial lag of the dependent variable is included. slx_lags : integer Number of spatial lags of X to include in the model specification. If slx_lags>0, the specification becomes of the SDEM or GNSM type. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_ds : string Name of dataset for use in output latex : boolean Specifies if summary is to be printed in latex format **kwargs : keywords Additional arguments to pass on to the estimators. See the specific functions for details on what can be used. Attributes ---------- output : dataframe regression results pandas dataframe summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable pr2 : float Pseudo R squared (squared correlation between y and ypred) vm : array Variance covariance matrix (kxk) sig2 : float Sigma squared used in computations std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used name_yend : list of strings (optional) Names of endogenous variables for use in output name_z : list of strings (optional) Names of exogenous and endogenous variables for use in output name_q : list of strings (optional) Names of external instruments name_h : list of strings (optional) Names of all instruments used in ouput Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``libpysal`` to handle the weights and file management. >>> import numpy as np >>> import libpysal >>> from libpysal.examples import load_example Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> nat = load_example('Natregimes') >>> db = libpysal.io.open(nat.get_path("natregimes.dbf"),'r') Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y_var = 'HR90' >>> y = np.array([db.by_col(y_var)]).reshape(3085,1) Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as x_var = ['Var1','Var2','...] Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in. >>> x_var = ['PS90','UE90'] >>> x = np.array([db.by_col(name) for name in x_var]).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``NAT.shp``. >>> w = libpysal.weights.Rook.from_shapefile(nat.get_path("natregimes.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' The GMM_Error class can run error models and SARAR models, that is a spatial lag+error model. In this example we will run a simple version of the latter, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> from spreg import GMM_Error >>> model = GMM_Error(y, x, w=w, add_wy=True, name_y=y_var, name_x=x_var, name_ds='NAT') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. >>> print(model.output) var_names coefficients std_err zt_stat prob 0 CONSTANT 2.176007 1.115807 1.950165 0.051156 1 PS90 1.108054 0.207964 5.328096 0.0 2 UE90 0.664362 0.061294 10.83893 0.0 3 W_HR90 -0.066539 0.154395 -0.430964 0.666494 4 lambda 0.765087 0.04268 17.926245 0.0 This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'. >>> yd_var = ['RD90'] >>> yd = np.array([db.by_col(name) for name in yd_var]).T >>> q_var = ['FP89'] >>> q = np.array([db.by_col(name) for name in q_var]).T And then we can run and explore the model analogously to the previous combo: >>> model = GMM_Error(y, x, yend=yd, q=q, w=w, add_wy=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_ds='NAT') >>> print(model.output) var_names coefficients std_err zt_stat prob 0 CONSTANT 5.44035 0.560476 9.706652 0.0 1 PS90 1.427042 0.1821 7.836572 0.0 2 UE90 -0.075224 0.050031 -1.503544 0.132699 3 RD90 3.316266 0.261269 12.692924 0.0 4 W_HR90 0.200314 0.057433 3.487777 0.000487 5 lambda 0.136933 0.070098 1.953457 0.050765 The class also allows for estimating a GNS model by adding spatial lags of the exogenous variables, using the argument slx_lags: >>> model = GMM_Error(y, x, w=w, add_wy=True, slx_lags=1, name_y=y_var, name_x=x_var, name_ds='NAT') >>> print(model.output) var_names coefficients std_err zt_stat prob 0 CONSTANT -0.554756 0.551765 -1.00542 0.314695 1 PS90 1.09369 0.225895 4.841583 0.000001 2 UE90 0.697393 0.082744 8.428291 0.0 3 W_PS90 -1.533378 0.396651 -3.865811 0.000111 4 W_UE90 -1.107944 0.33523 -3.305028 0.00095 5 W_HR90 1.529277 0.389354 3.927728 0.000086 6 lambda -0.917928 0.079569 -11.53625 0.0 """ def __init__( self, y, x, w, yend=None, q=None, estimator='het', add_wy=False, slx_lags=0, vm=False, name_y=None, name_x=None, name_w=None, name_yend=None, name_q=None, name_ds=None, latex=False, **kwargs): if estimator == 'het': if yend is None and not add_wy: GM_Error_Het.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif yend is not None and not add_wy: GM_Endog_Error_Het.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif add_wy: GM_Combo_Het.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) else: set_warn(self, 'Combination of arguments passed to GMM_Error not allowed. Using default arguments instead.') GM_Error_Het.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex) elif estimator == 'hom': if yend is None and not add_wy: GM_Error_Hom.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif yend is not None and not add_wy: GM_Endog_Error_Hom.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif add_wy: GM_Combo_Hom.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) else: set_warn(self, 'Combination of arguments passed to GMM_Error not allowed. Using default arguments instead.') GM_Error_Hom.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex) elif estimator == 'kp98': if yend is None and not add_wy: GM_Error.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif yend is not None and not add_wy: GM_Endog_Error.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) elif add_wy: GM_Combo.__init__(self, y=y, x=x, yend=yend, q=q, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_w=name_w, name_ds=name_ds, latex=latex, **kwargs) else: set_warn(self, 'Combination of arguments passed to GMM_Error not allowed. Using default arguments instead.') GM_Error.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex) else: set_warn(self, 'Combination of arguments passed to GMM_Error not allowed. Using default arguments instead.') GM_Error_Het.__init__(self, y=y, x=x, w=w, slx_lags=slx_lags, vm=vm, name_y=name_y, name_x=name_x, name_w=name_w, name_ds=name_ds, latex=latex) def _momentsGM_Error(w, u): try: wsparse = w.sparse except: wsparse = w n = wsparse.shape[0] u2 = np.dot(u.T, u) wu = wsparse * u uwu = np.dot(u.T, wu) wu2 = np.dot(wu.T, wu) wwu = wsparse * wu uwwu = np.dot(u.T, wwu) wwu2 = np.dot(wwu.T, wwu) wuwwu = np.dot(wu.T, wwu) wtw = wsparse.T * wsparse trWtW = np.sum(wtw.diagonal()) g = np.array([[u2[0][0], wu2[0][0], uwu[0][0]]]).T / n G = ( np.array( [ [2 * uwu[0][0], -wu2[0][0], n], [2 * wuwwu[0][0], -wwu2[0][0], trWtW], [uwwu[0][0] + wu2[0][0], -wuwwu[0][0], 0.0], ] ) / n ) return [G, g] def _test(): import doctest start_suppress = np.get_printoptions()["suppress"] np.set_printoptions(suppress=True) doctest.testmod() np.set_printoptions(suppress=start_suppress) if __name__ == "__main__": _test() import numpy as np import libpysal db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') y = np.array(db.by_col("HOVAL")) y = np.reshape(y, (49,1)) X = [] X.append(db.by_col("INC")) X = np.array(X).T yd = [] yd.append(db.by_col("CRIME")) yd = np.array(yd).T q = [] q.append(db.by_col("DISCBD")) q = np.array(q).T w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) w.transform = 'r' #reg = GM_Error(y, X, w=w, name_x=['inc'], name_y='hoval', name_ds='columbus', vm=True) #reg = GM_Endog_Error(y, X, yd, q, w=w, name_x=['inc'], name_y='hoval', name_yend=['crime'], # name_q=['discbd'], name_ds='columbus',vm=True) reg = GM_Combo(y, X, yd, q, w=w, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus', vm=True) print(reg.output) print(reg.summary)