spglm.glm.GLM¶
- class spglm.glm.GLM(y, X, family=<spglm.family.Gaussian object>, offset=None, y_fix=None, constant=True)[source]¶
- Generalised linear models. Can currently estimate Guassian, Poisson and Logisitc regression coefficients. GLM object prepares model input and fit method performs estimation which then returns a GLMResults object. - Parameters:
- yarray
- n*1, dependent variable. 
- Xarray
- n*k, independent variable, exlcuding the constant. 
- familystr
- Model type: ‘Gaussian’, ‘Poisson’, ‘Binomial’ 
- offsetarray
- n*1, the offset variable at the ith location. For Poisson model this term is often the size of the population at risk or the expected size of the outcome in spatial epidemiology. Default is None where Ni becomes 1.0 for all locations. 
- y_fixarray
- n*1, the fix intercept value of y 
 
- y
 - Examples - >>> import libpysal >>> from spglm.glm import GLM >>> from spglm import family >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("CRIME")) >>> X = np.array(X).T >>> model = GLM(y, X, family=family.Gaussian()) >>> results = model.fit() >>> results.params array([46.42818268, 0.62898397, -0.48488854]) - Attributes:
- yarray
- n*1, dependent variable. 
- Xarray
- n*k, independent variable, including constant. 
- familystr
- Model type: ‘Gaussian’, ‘Poisson’, ‘logistic’ 
- ninteger
- Number of observations 
- kinteger
- Number of independent variables 
- df_modelfloat
- k-1, where k is the number of variables (including intercept) 
- df_residualfloat
- observations minus variables (n-k) 
- mean_yfloat
- Mean of y 
- std_yfloat
- Standard deviation of y 
- fit_paramsdict
- Parameters passed into fit method to define estimation routine. 
 
- y
 - __init__(y, X, family=<spglm.family.Gaussian object>, offset=None, y_fix=None, constant=True)[source]¶
- Initialize class 
 - Methods - __init__(y, X[, family, offset, y_fix, constant])- Initialize class - df_model()- df_resid()- fit([ini_betas, tol, max_iter, solve])- Method that fits a model with a particular estimation routine. - Attributes - mean_y- std_y- fit(ini_betas=None, tol=1e-06, max_iter=200, solve='iwls')[source]¶
- Method that fits a model with a particular estimation routine. - Parameters:
- ini_betasarray
- k*1, initial coefficient values, including constant. Default is None, which calculates initial values during estimation. 
- tol: float
- Tolerence for estimation convergence. 
- max_iterinteger
- Maximum number of iterations if convergence not achieved. 
- solve :string
- Technique to solve MLE equations. ‘iwls’ = iteratively (re)weighted least squares (default) 
 
- ini_betas