segregation.singlegroup.MinMax¶
- class segregation.singlegroup.MinMax(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay=None, function='triangular', precompute=None, **kwargs)[source]¶
Min-Max Index.
- Parameters:
- data
pandas.DataFrame
orgeopandas.GeoDataFrame
,required
dataframe or geodataframe if spatial index holding data for location of interest
- group_pop_var
str
,required
name of column on dataframe holding population totals for focal group
- total_pop_var
str
,required
name of column on dataframe holding total overall population
- w
libpysal.weights.KernelW
,optional
lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network
pandana Network object representing the study area
- distance
int
Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str
type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- data
- Attributes:
Notes
Based on O’Sullivan & Wong (2007). A Surface‐Based Approach to Measuring Spatial Segregation. Geographical Analysis 39 (2). https://doi.org/10.1111/j.1538-4632.2007.00699.x
Reference: [O'Sullivan and Wong, 2007].
We’d like to thank @AnttiHaerkoenen for this contribution!
- __init__(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay=None, function='triangular', precompute=None, **kwargs)[source]¶
Init.
Methods
__init__
(data, group_pop_var, total_pop_var)Init.