segregation.singlegroup.DensityCorrectedDissim

class segregation.singlegroup.DensityCorrectedDissim(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay='linear', precompute=None, function='triangular', **kwargs)[source]

Density Corrected Dissimilarity Index.

Parameters:
datapandas.DataFrame or geopandas.GeoDataFrame, required

dataframe or geodataframe if spatial index holding data for location of interest

group_pop_varstr, required

name of column on dataframe holding population totals for focal group

total_pop_varstr, required

name of column on dataframe holding total overall population

wlibpysal.weights.KernelW, optional

lipysal spatial kernel weights object used to define an egohood

networkpandana.Network

pandana Network object representing the study area

distanceint

Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood

decaystr

type of decay function to apply. Options include

precomputebool

Whether to precompute the pandana Network object

Attributes:
statisticfloat

Segregation Index

core_dataa pandas DataFrame

A pandas DataFrame that contains the columns used to perform the estimate.

Notes

Based on Allen, Rebecca, et al. “More reliable inference for the dissimilarity index of segregation.” The econometrics journal 18.1 (2015): 40-66.

Reference: [Allen et al., 2015].

__init__(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay='linear', precompute=None, function='triangular', **kwargs)[source]

Init.

Methods

__init__(data, group_pop_var, total_pop_var)

Init.