segregation.singlegroup.DensityCorrectedDissim¶
- class segregation.singlegroup.DensityCorrectedDissim(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay='linear', precompute=None, function='triangular', **kwargs)[source]¶
- Density Corrected Dissimilarity Index. - Parameters:
- datapandas.DataFrameorgeopandas.GeoDataFrame,required
- dataframe or geodataframe if spatial index holding data for location of interest 
- group_pop_varstr,required
- name of column on dataframe holding population totals for focal group 
- total_pop_varstr,required
- name of column on dataframe holding total overall population 
- wlibpysal.weights.KernelW,optional
- lipysal spatial kernel weights object used to define an egohood 
- networkpandana.Network
- pandana Network object representing the study area 
- distanceint
- Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood 
- decaystr
- type of decay function to apply. Options include 
- precomputebool
- Whether to precompute the pandana Network object 
 
- data
- Attributes:
 - Notes - Based on Allen, Rebecca, et al. “More reliable inference for the dissimilarity index of segregation.” The econometrics journal 18.1 (2015): 40-66. - Reference: [Allen et al., 2015]. - __init__(data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay='linear', precompute=None, function='triangular', **kwargs)[source]¶
- Init. 
 - Methods - __init__(data, group_pop_var, total_pop_var)- Init.