segregation.singlegroup.BiasCorrectedDissim¶
- class segregation.singlegroup.BiasCorrectedDissim(data, group_pop_var, total_pop_var, B=500, w=None, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Bias Corrected Dissimilarity Index.
- Parameters:
- data
pandas.DataFrame
orgeopandas.GeoDataFrame
,required
dataframe or geodataframe if spatial index holding data for location of interest
- group_pop_var
str
,required
name of column on dataframe holding population totals for focal group
- total_pop_var
str
,required
name of column on dataframe holding total overall population
- B
int
The number of iterations to calculate Dissimilarity simulating randomness with multinomial distributions. Default value is 500.
- w
libpysal.weights.KernelW
,optional
lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network
pandana Network object representing the study area
- distance
int
Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str
type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- data
- Attributes:
Notes
Based on Carrington, William J., and Kenneth R. Troske. “On measuring segregation in samples with small units.” Journal of Business & Economic Statistics 15.4 (1997): 402-409.
Reference: [Carrington and Troske, 1997].
- __init__(data, group_pop_var, total_pop_var, B=500, w=None, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Init.
Methods
__init__
(data, group_pop_var, total_pop_var)Init.