segregation.multigroup.SimpsonsInteraction¶
- class segregation.multigroup.SimpsonsInteraction(data, groups, w=None, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Simpsons Concentration Index.
- Parameters:
- data
pandas.DataFrame
orgeopandas.GeoDataFrame
,required
dataframe or geodataframe if spatial index holding data for location of interest
- groups
list
,required
list of columns on dataframe holding population totals for each group
- w
libpysal.weights.KernelW
,optional
lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network
pandana Network object representing the study area
- distance
int
Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str
type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- data
- Attributes:
Notes
Based on Equation 1 of page 37 of Reardon, Sean F., and Glenn Firebaugh. “Measures of multigroup segregation.” Sociological methodology 32.1 (2002): 33-67.
Simpson’s interaction index (I) can be simply interpreted as the probability that two individuals chosen at random and independently from the population will be found to not belong to the same group.
Higher values means lesser segregation.
Simpson’s Concentration + Simpson’s Interaction = 1
Reference: [Reardon and Firebaugh, 2002].
- __init__(data, groups, w=None, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Init.
Methods
__init__
(data, groups[, w, network, ...])Init.