segregation.multigroup.MultiInfoTheory¶
- class segregation.multigroup.MultiInfoTheory(data, groups, w=None, network=None, distance=None, decay='linear', function='triangular', precompute=False, **kwargs)[source]¶
Multigroup Information Theory Index.
- Parameters:
- data
pandas.DataFrameorgeopandas.GeoDataFrame,required dataframe or geodataframe if spatial index holding data for location of interest
- groups
list,required list of columns on dataframe holding population totals for each group
- w
libpysal.weights.KernelW,optional lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network pandana Network object representing the study area
- distance
int Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- data
- Attributes:
Notes
Based on Reardon, Sean F., and Glenn Firebaugh. “Measures of multigroup segregation.” Sociological methodology 32.1 (2002): 33-67.
Reference: [Reardon and Firebaugh, 2002].
- __init__(data, groups, w=None, network=None, distance=None, decay='linear', function='triangular', precompute=False, **kwargs)[source]¶
Init.
Methods
__init__(data, groups[, w, network, ...])Init.