segregation.multigroup.MultiGini¶
- class segregation.multigroup.MultiGini(data, groups, w=None, network=None, distance=None, decay='linear', function='triangular', precompute=False, **kwargs)[source]¶
Multigroup Gini Index.
- Parameters:
- data
pandas.DataFrame
orgeopandas.GeoDataFrame
,required
dataframe or geodataframe if spatial index holding data for location of interest
- groups
list
,required
list of columns on dataframe holding population totals for each group
- w
libpysal.weights.KernelW
,optional
lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network
pandana Network object representing the study area
- distance
int
Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str
type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- data
- Attributes:
- __init__(data, groups, w=None, network=None, distance=None, decay='linear', function='triangular', precompute=False, **kwargs)[source]¶
Init.
Methods
__init__
(data, groups[, w, network, ...])Init.