segregation.multigroup.MultiDiversity¶
- class segregation.multigroup.MultiDiversity(data, groups, w=None, normalized=False, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Multigroup Diversity Index.
- Parameters:
- data
pandas.DataFrame
orgeopandas.GeoDataFrame
,required
dataframe or geodataframe if spatial index holding data for location of interest
- groups
list
,required
list of columns on dataframe holding population totals for each group
- w
libpysal.weights.KernelW
,optional
lipysal spatial kernel weights object used to define an egohood
- network
pandana.Network
pandana Network object representing the study area
- distance
int
Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood
- decay
str
type of decay function to apply. Options include
- precomputebool
Whether to precompute the pandana Network object
- normalizedbool.
Default
is
False. Whether the resulting index will be divided by its maximum (natural log of the number of groups)
- data
- Attributes:
Notes
Based on Reardon, Sean F., and Glenn Firebaugh. “Measures of multigroup segregation.” Sociological methodology 32.1 (2002): 33-67 and Theil, Henry. “Statistical decomposition analysis; with applications in the social and administrative sciences”. No. 04; HA33, T4.. 1972.
This is also know as Theil’s Entropy Index (Equation 2 of page 37 of Reardon, Sean F., and Glenn Firebaugh. “Measures of multigroup segregation.” Sociological methodology 32.1 (2002): 33-67)
High diversity means less segregation.
Reference: [Reardon and Firebaugh, 2002].
- __init__(data, groups, w=None, normalized=False, network=None, distance=None, decay=None, precompute=None, function='triangular', **kwargs)[source]¶
Init.
Methods
__init__
(data, groups[, w, normalized, ...])Init.