segregation.local.LocalRelativeCentralization

class segregation.local.LocalRelativeCentralization(data, group_pop_var=None, total_pop_var=None, w=None, network=None, distance=None, decay=None, precompute=None, groups=None)[source]

Multigroup Local Simpson’s Concentration Index.

Parameters:
datapandas.DataFrame or geopandas.GeoDataFrame, required

dataframe or geodataframe if spatial index holding data for location of interest

groupslist, required

list of columns on dataframe holding population totals for each group

wlibpysal.W, optional

lipysal spatial weights object used to define a local neighborhood. If none is passed, a KNN ojbect with k=5 will be used

networkpandana.Network

pandana Network object representing the study area

distanceint

Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood

decaystr

type of decay function to apply. Options include

precomputebool

Whether to precompute the pandana Network object

Attributes:
statisticfloat

Multigroup Dissimilarity Index value

core_dataa pandas DataFrame

DataFrame that contains the columns used to perform the estimate.

Notes

Based on Folch, David C., and Sergio J. Rey. “The centralization index: A measure of local spatial segregation.” Papers in Regional Science 95.3 (2016): 555-576.

Reference: [Folch and Rey, 2016].

__init__(data, group_pop_var=None, total_pop_var=None, w=None, network=None, distance=None, decay=None, precompute=None, groups=None)[source]

Init.

Methods

__init__(data[, group_pop_var, ...])

Init.