segregation.batch.batch_multiscalar_multigroup¶
- segregation.batch.batch_multiscalar_multigroup(gdf, distances, groups, progress_bar=True, **kwargs)[source]¶
Batch compute multiscalar profiles for multi-group indices.
- Parameters:
- gdf
DataFrame
orGeoDataFrame
DataFrame holding demographic data for study region
- distances
list
list of floats representing bandwidth distances that define a local environment.
- groups
list
The variables names in data of the groups of interest of the analysis.
- progress_bar: bool
Whether to show a progress bar during calculation
- **kwargs
dict
additional keyword arguments passed to each index (e.g. for setting a random seed in indices like ModifiedGini or ModifiedDissm)
- gdf
- Returns:
pandas.DataFrame
pandas Dataframe with distance as dataframe index and each segregation statistic as dataframe columns