Source code for segregation.singlegroup.dissim

"""Dissimilarity Segregation Index."""

__author__ = "Renan X. Cortes <renanc@ucr.edu>, Sergio J. Rey <sergio.rey@ucr.edu> and Elijah Knaap <elijah.knaap@ucr.edu>"

import geopandas as gpd
import numpy as np
import pandas as pd

from .._base import SingleGroupIndex, SpatialImplicitIndex


def _dissim(data, group_pop_var, total_pop_var):
    """Calculate Dissimilarity index.

    Parameters
    ----------
    data : pandas.DataFrame or geopandas.GeoDataFrame
        Dataframe or geodataframe if spatial index holding data for location of interest
    group_pop_var : string
        Variable containing the population count of the group of interest
    total_pop_var : string
        Variable in data that contains the total population count of the unit

    Returns
    ----------
    statistic : float
        D index statistic value
    core_data : pandas.DataFrame
        A pandas DataFrame that contains the columns used to perform the estimate.

    Notes
    -----
    Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315.

    Reference: :cite:`massey1988dimensions`.

    """
    x = np.array(data[group_pop_var])
    t = np.array(data[total_pop_var])

    if any(t < x):
        raise ValueError(
            "Group of interest population must equal or lower than the total population of the units."
        )

    T = t.sum()
    P = x.sum() / T

    # If a unit has zero population, the group of interest frequency is zero
    pi = np.where(t == 0, 0, x / t)

    D = (((t * abs(pi - P))) / (2 * T * P * (1 - P))).sum()

    if not isinstance(data, gpd.GeoDataFrame):
        core_data = data[[group_pop_var, total_pop_var]]

    else:
        core_data = data[[group_pop_var, total_pop_var, data.geometry.name]]

    return D, core_data


[docs] class Dissim(SingleGroupIndex, SpatialImplicitIndex): """Dissimilarity Index. Parameters ---------- data : pandas.DataFrame or geopandas.GeoDataFrame, required dataframe or geodataframe if spatial index holding data for location of interest group_pop_var : str, required name of column on dataframe holding population totals for focal group total_pop_var : str, required name of column on dataframe holding total overall population w : libpysal.weights.KernelW, optional lipysal spatial kernel weights object used to define an egohood network : pandana.Network pandana Network object representing the study area distance : int Maximum distance (in units of geodataframe CRS) to consider the extent of the egohood decay : str type of decay function to apply. Options include precompute : bool Whether to precompute the pandana Network object Attributes ---------- statistic : float Dissim Index core_data : a pandas DataFrame A pandas DataFrame that contains the columns used to perform the estimate. Notes ----- Based on Massey, Douglas S., and Nancy A. Denton. "The dimensions of residential segregation." Social forces 67.2 (1988): 281-315. Reference: :cite:`massey1988dimensions`. """
[docs] def __init__( self, data, group_pop_var, total_pop_var, w=None, network=None, distance=None, decay=None, function="triangular", precompute=None, **kwargs ): """Init.""" SingleGroupIndex.__init__(self, data, group_pop_var, total_pop_var) if any([w, network, distance]): SpatialImplicitIndex.__init__( self, w, network, distance, decay, function, precompute ) aux = _dissim(self.data, self.group_pop_var, self.total_pop_var) self.statistic = aux[0] self.data = aux[1] self._function = _dissim